
Thermodynamics

1.1 PHYSICAL CHEMISTRY

Physical chemistry is the study of the underlying physical principles that govern theproperties and behavior of chemical systems.A chemical system can be studied from either a microscopic or a macroscopicviewpoint. The microscopic viewpoint is based on the concept of molecules. The
macroscopic viewpoint studies large-scale properties of matter without explicit use ofthe molecule concept. The first half of this book uses mainly a macroscopic viewpoint;the second half uses mainly a microscopic viewpoint.We can divide physical chemistry into four areas: thermodynamics, quantumchemistry, statistical mechanics, and kinetics (Fig. 1.1). Thermodynamics is a macro-scopic science that studies the interrelationships of the various equilibrium propertiesof a system and the changes in equilibrium properties in processes. Thermodynamicsis treated in Chapters 1 to 13.Molecules and the electrons and nuclei that compose them do not obey classicalmechanics. Instead, their motions are governed by the laws of quantum mechanics(Chapter 17). Application of quantum mechanics to atomic structure, molecular bond-ing, and spectroscopy gives us quantum chemistry (Chapters 18 to 20).The macroscopic science of thermodynamics is a consequence of what is hap-pening at a molecular (microscopic) level. The molecular and macroscopic levels arerelated to each other by the branch of science called statistical mechanics. Statisticalmechanics gives insight into why the laws of thermodynamics hold and allows calcu-lation of macroscopic thermodynamic properties from molecular properties. We shallstudy statistical mechanics in Chapters 14, 15, 21, 22, and 23.

Kinetics is the study of rate processes such as chemical reactions, diffusion, andthe flow of charge in an electrochemical cell. The theory of rate processes is not aswell developed as the theories of thermodynamics, quantum mechanics, and statisticalmechanics. Kinetics uses relevant portions of thermodynamics, quantum chemistry,and statistical mechanics. Chapters 15, 16, and 22 deal with kinetics.The principles of physical chemistry provide a framework for all branches ofchemistry. C H A P T E R
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Chapter 1Thermodynamics2 Organic chemists use kinetics studies to figure out the mechanisms of reactions,use quantum-chemistry calculations to study the structures and stabilities of reactionintermediates, use symmetry rules deduced from quantum chemistry to predict thecourse of many reactions, and use nuclear-magnetic-resonance (NMR) and infraredspectroscopy to help determine the structure of compounds. Inorganic chemists usequantum chemistry and spectroscopy to study bonding. Analytical chemists use spec-troscopy to analyze samples. Biochemists use kinetics to study rates of enzyme-catalyzed reactions; use thermodynamics to study biological energy transformations,osmosis, and membrane equilibrium, and to determine molecular weights of biologicalmolecules; use spectroscopy to study processes at the molecular level (for example, in-tramolecular motions in proteins are studied using NMR); and use x-ray diffraction todetermine the structures of proteins and nucleic acids.Environmental chemists use thermodynamics to find the equilibrium compositionof lakes and streams, use chemical kinetics to study the reactions of pollutants in theatmosphere, and use physical kinetics to study the rate of dispersion of pollutants inthe environment.Chemical engineers use thermodynamics to predict the equilibrium compositionof reaction mixtures, use kinetics to calculate how fast products will be formed, anduse principles of thermodynamic phase equilibria to design separation proceduressuch as fractional distillation. Geochemists use thermodynamic phase diagrams to un-derstand processes in the earth. Polymer chemists use thermodynamics, kinetics, andstatistical mechanics to investigate the kinetics of polymerization, the molecularweights of polymers, the flow of polymer solutions, and the distribution of conforma-tions of a polymer molecule.Widespread recognition of physical chemistry as a discipline began in 1887 withthe founding of the journal Zeitschrift für Physikalische Chemie by Wilhelm Ostwaldwith J. H. van’t Hoff as coeditor. Ostwald investigated chemical equilibrium, chemi-cal kinetics, and solutions and wrote the first textbook of physical chemistry. He wasinstrumental in drawing attention to Gibbs’ pioneering work in chemical thermody-namics and was the first to nominate Einstein for a Nobel Prize. Surprisingly, Ostwaldargued against the atomic theory of matter and did not accept the reality of atomsand molecules until 1908. Ostwald, van’t Hoff, Gibbs, and Arrhenius are generallyregarded as the founders of physical chemistry. (In Sinclair Lewis’s 1925 novelArrowsmith, the character Max Gottlieb, a medical school professor, proclaims that“Physical chemistry is power, it is exactness, it is life.”)In its early years, physical chemistry research was done mainly at the macroscopiclevel. With the discovery of the laws of quantum mechanics in 1925–1926, emphasisbegan to shift to the molecular level. (The Journal of Chemical Physics was foundedin 1933 in reaction to the refusal of the editors of the Journal of Physical Chemistryto publish theoretical papers.) Nowadays, the power of physical chemistry has beengreatly increased by experimental techniques that study properties and processes at themolecular level and by fast computers that (a) process and analyze data of spec-troscopy and x-ray crystallography experiments, (b) accurately calculate properties ofmolecules that are not too large, and (c) perform simulations of collections of hun-dreds of molecules.Nowadays, the prefix nano is widely used in such terms as nanoscience, nano-technology, nanomaterials, nanoscale, etc. A nanoscale (or nanoscopic) system is onewith at least one dimension in the range 1 to 100 nm, where 1 nm 5 1029 m. (Atomicdiameters are typically 0.1 to 0.3 nm.) A nanoscale system typically contains thou-sands of atoms. The intensive properties of a nanoscale system commonly dependon its size and differ substantially from those of a macroscopic system of the samecomposition. For example, macroscopic solid gold is yellow, is a good electrical con-ductor, melts at 1336 K, and is chemically unreactive; however, gold nanoparticles of



radius 2.5 nm melt at 930 K, and catalyze many reactions; gold nanoparticles of 100 nmradius are purple-pink, of 20 nm radius are red, and of 1 nm radius are orange; goldparticles of 1 nm or smaller radius are electrical insulators. The term mesoscopic issometimes used to refer to systems larger than nanoscopic but smaller than macro-scopic. Thus we have the progressively larger size levels: atomic → nanoscopic →mesoscopic → macroscopic.
1.2 THERMODYNAMICS

ThermodynamicsWe begin our study of physical chemistry with thermodynamics. Thermodynamics(from the Greek words for “heat” and “power”) is the study of heat, work, energy, andthe changes they produce in the states of systems. In a broader sense, thermodynamicsstudies the relationships between the macroscopic properties of a system. A key prop-erty in thermodynamics is temperature, and thermodynamics is sometimes defined asthe study of the relation of temperature to the macroscopic properties of matter.We shall be studying equilibrium thermodynamics, which deals with systems inequilibrium. (Irreversible thermodynamics deals with nonequilibrium systems andrate processes.) Equilibrium thermodynamics is a macroscopic science and is inde-pendent of any theories of molecular structure. Strictly speaking, the word “molecule”is not part of the vocabulary of thermodynamics. However, we won’t adopt a puristattitude but will often use molecular concepts to help us understand thermodynamics.Thermodynamics does not apply to systems that contain only a few molecules; a sys-tem must contain a great many molecules for it to be treated thermodynamically. Theterm “thermodynamics” in this book will always mean equilibrium thermodynamics.
Thermodynamic SystemsThe macroscopic part of the universe under study in thermodynamics is called the
system. The parts of the universe that can interact with the system are called the
surroundings.For example, to study the vapor pressure of water as a function of temperature, wemight put a sealed container of water (with any air evacuated) in a constant-temperaturebath and connect a manometer to the container to measure the pressure (Fig. 1.2). Here,the system consists of the liquid water and the water vapor in the container, and thesurroundings are the constant-temperature bath and the mercury in the manometer. Section 1.2Thermodynamics3

Figure 1.2A thermodynamic system and its surroundings.



Chapter 1Thermodynamics4 An open system is one where transfer of matter between system and surroundingscan occur. A closed system is one where no transfer of matter can occur between sys-tem and surroundings. An isolated system is one that does not interact in any way withits surroundings. An isolated system is obviously a closed system, but not every closedsystem is isolated. For example, in Fig. 1.2, the system of liquid water plus water vaporin the sealed container is closed (since no matter can enter or leave) but not isolated(since it can be warmed or cooled by the surrounding bath and can be compressed orexpanded by the mercury). For an isolated system, neither matter nor energy can betransferred between system and surroundings. For a closed system, energy but notmatter can be transferred between system and surroundings. For an open system, bothmatter and energy can be transferred between system and surroundings.A thermodynamic system is either open or closed and is either isolated or non-isolated. Most commonly, we shall deal with closed systems.
WallsA system may be separated from its surroundings by various kinds of walls. (InFig. 1.2, the system is separated from the bath by the container walls.) A wall can beeither rigid or nonrigid (movable). A wall may be permeable or impermeable,where by “impermeable” we mean that it allows no matter to pass through it. Finally,a wall may be adiabatic or nonadiabatic. In plain language, an adiabatic wall is onethat does not conduct heat at all, whereas a nonadiabatic wall does conduct heat.However, we have not yet defined heat, and hence to have a logically correct devel-opment of thermodynamics, adiabatic and nonadiabatic walls must be defined withoutreference to heat. This is done as follows.Suppose we have two separate systems A and B, each of whose properties are ob-served to be constant with time. We then bring A and B into contact via a rigid, imper-meable wall (Fig. 1.3). If, no matter what the initial values of the properties of A and Bare, we observe no change in the values of these properties (for example, pressures, vol-umes) with time, then the wall separating A and B is said to be adiabatic. If we gener-ally observe changes in the properties of A and B with time when they are brought in con-tact via a rigid, impermeable wall, then this wall is called nonadiabatic or thermally
conducting. (As an aside, when two systems at different temperatures are brought incontact through a thermally conducting wall, heat flows from the hotter to the colder sys-tem, thereby changing the temperatures and other properties of the two systems; with anadiabatic wall, any temperature difference is maintained. Since heat and temperature arestill undefined, these remarks are logically out of place, but they have been included toclarify the definitions of adiabatic and thermally conducting walls.) An adiabatic wall isan idealization, but it can be approximated, for example, by the double walls of a Dewarflask or thermos bottle, which are separated by a near vacuum.In Fig. 1.2, the container walls are impermeable (to keep the system closed) andare thermally conducting (to allow the system’s temperature to be adjusted to that ofthe surrounding bath). The container walls are essentially rigid, but if the interfacebetween the water vapor and the mercury in the manometer is considered to be a“wall,” then this wall is movable. We shall often deal with a system separated from itssurroundings by a piston, which acts as a movable wall.A system surrounded by a rigid, impermeable, adiabatic wall cannot interact withthe surroundings and is isolated.
EquilibriumEquilibrium thermodynamics deals with systems in equilibrium. An isolated systemis in equilibrium when its macroscopic properties remain constant with time. A non-isolated system is in equilibrium when the following two conditions hold: (a) Thesystem’s macroscopic properties remain constant with time; (b) removal of the systemWA B

Figure 1.3Systems A and B are separated bya wall W.



from contact with its surroundings causes no change in the properties of the system.If condition (a) holds but (b) does not hold, the system is in a steady state. An exam-ple of a steady state is a metal rod in contact at one end with a large body at 50°C andin contact at the other end with a large body at 40°C. After enough time has elapsed,the metal rod satisfies condition (a); a uniform temperature gradient is set up along therod. However, if we remove the rod from contact with its surroundings, the tempera-tures of its parts change until the whole rod is at 45°C.The equilibrium concept can be divided into the following three kinds of equilib-rium. For mechanical equilibrium, no unbalanced forces act on or within the system;hence the system undergoes no acceleration, and there is no turbulence within the sys-tem. For material equilibrium, no net chemical reactions are occurring in the system,nor is there any net transfer of matter from one part of the system to another or be-tween the system and its surroundings; the concentrations of the chemical species inthe various parts of the system are constant in time. For thermal equilibrium betweena system and its surroundings, there must be no change in the properties of the systemor surroundings when they are separated by a thermally conducting wall. Likewise, wecan insert a thermally conducting wall between two parts of a system to test whetherthe parts are in thermal equilibrium with each other. For thermodynamic equilibrium,all three kinds of equilibrium must be present.
Thermodynamic PropertiesWhat properties does thermodynamics use to characterize a system in equilibrium?Clearly, the composition must be specified. This can be done by stating the mass ofeach chemical species that is present in each phase. The volume V is a property of thesystem. The pressure P is another thermodynamic variable. Pressure is defined as themagnitude of the perpendicular force per unit area exerted by the system on its sur-roundings:

(1.1)*where F is the magnitude of the perpendicular force exerted on a boundary wall ofarea A. The symbol ; indicates a definition. An equation with a star after its numbershould be memorized. Pressure is a scalar, not a vector. For a system in mechanicalequilibrium, the pressure throughout the system is uniform and equal to the pressureof the surroundings. (We are ignoring the effect of the earth’s gravitational field, whichcauses a slight increase in pressure as one goes from the top to the bottom of the sys-tem.) If external electric or magnetic fields act on the system, the field strengths arethermodynamic variables; we won’t consider systems with such fields. Later, furtherthermodynamic properties (for example, temperature, internal energy, entropy) will bedefined.An extensive thermodynamic property is one whose value is equal to the sum ofits values for the parts of the system. Thus, if we divide a system into parts, the massof the system is the sum of the masses of the parts; mass is an extensive property. Sois volume. An intensive thermodynamic property is one whose value does not dependon the size of the system, provided the system remains of macroscopic size—recallnanoscopic systems (Sec. 1.1). Density and pressure are examples of intensive prop-erties. We can take a drop of water or a swimming pool full of water, and both sys-tems will have the same density.If each intensive macroscopic property is constant throughout a system, the sys-tem is homogeneous. If a system is not homogeneous, it may consist of a number ofhomogeneous parts. A homogeneous part of a system is called a phase. For example,if the system consists of a crystal of AgBr in equilibrium with an aqueous solutionof AgBr, the system has two phases: the solid AgBr and the solution. A phase can con-sist of several disconnected pieces. For example, in a system composed of severalP ; F>A Section 1.2Thermodynamics5



Chapter 1Thermodynamics6 AgBr crystals in equilibrium with an aqueous solution, all the crystals are part of thesame phase. Note that the definition of a phase does not mention solids, liquids, orgases. A system can be entirely liquid (or entirely solid) and still have more than onephase. For example, a system composed of the nearly immiscible liquids H2O andCCl4 has two phases. A system composed of the solids diamond and graphite has twophases.A system composed of two or more phases is heterogeneous.The density r (rho) of a phase of mass m and volume V is
(1.2)*Figure 1.4 plots some densities at room temperature and pressure. The symbols s, l,and g stand for solid, liquid, and gas.Suppose that the value of every thermodynamic property in a certain thermody-namic system equals the value of the corresponding property in a second system.The systems are then said to be in the same thermodynamic state. The state of athermodynamic system is defined by specifying the values of its thermodynamic prop-erties. However, it is not necessary to specify all the properties to define the state.Specification of a certain minimum number of properties will fix the values of all otherproperties. For example, suppose we take 8.66 g of pure H2O at 1 atm (atmosphere)pressure and 24°C. It is found that in the absence of external fields all the remainingproperties (volume, heat capacity, index of refraction, etc.) are fixed. (This statementignores the possibility of surface effects, which are considered in Chapter 7.) Twothermodynamic systems each consisting of 8.66 g of H2O at 24°C and 1 atm are in thesame thermodynamic state. Experiments show that, for a single-phase system con-taining specified fixed amounts of nonreacting substances, specification of two addi-tional thermodynamic properties is generally sufficient to determine the thermody-namic state, provided external fields are absent and surface effects are negligible.A thermodynamic system in a given equilibrium state has a particular value foreach thermodynamic property. These properties are therefore also called state

functions, since their values are functions of the system’s state. The value of a statefunction depends only on the present state of a system and not on its past history. Itdoesn’t matter whether we got the 8.66 g of water at 1 atm and 24°C by melting iceand warming the water or by condensing steam and cooling the water.
1.3 TEMPERATURESuppose two systems separated by a movable wall are in mechanical equilibrium witheach other. Because we have mechanical equilibrium, no unbalanced forces act andeach system exerts an equal and opposite force on the separating wall. Therefore eachsystem exerts an equal pressure on this wall. Systems in mechanical equilibrium witheach other have the same pressure. What about systems that are in thermal equilibrium(Sec. 1.2) with each other? Just as systems in mechanical equilibrium have a common pressure, it seemsplausible that there is some thermodynamic property common to systems in thermalequilibrium. This property is what we define as the temperature, symbolized by u (theta).By definition, two systems in thermal equilibrium with each other have the same temper-ature; two systems not in thermal equilibrium have different temperatures.Although we have asserted the existence of temperature as a thermodynamic statefunction that determines whether or not thermal equilibrium exists between systems,we need experimental evidence that there really is such a state function. Suppose thatwe find systems A and B to be in thermal equilibrium with each other when broughtin contact via a thermally conducting wall. Further suppose that we find systems B andr ; m>V

Figure 1.4Densities at 25°C and 1 atm. Thescale is logarithmic.



C to be in thermal equilibrium with each other. By our definition of temperature, wewould assign the same temperature to A and B (uA 5 uB) and the same temperature toB and C (uB 5 uC). Therefore, systems A and C would have the same temperature(uA 5 uC), and we would expect to find A and C in thermal equilibrium when theyare brought in contact via a thermally conducting wall. If A and C were not found tobe in thermal equilibrium with each other, then our definition of temperature would beinvalid. It is an experimental fact that:
Two systems that are each found to be in thermal equilibrium with a third sys-
tem will be found to be in thermal equilibrium with each other.This generalization from experience is the zeroth law of thermodynamics. It is so calledbecause only after the first, second, and third laws of thermodynamics had been for-mulated was it realized that the zeroth law is needed for the development of thermody-namics. Moreover, a statement of the zeroth law logically precedes the other three. Thezeroth law allows us to assert the existence of temperature as a state function.Having defined temperature, how do we measure it? Of course, you are familiarwith the process of putting a liquid-mercury thermometer in contact with a system,waiting until the volume change of the mercury has ceased (indicating that thermalequilibrium between the thermometer and the system has been reached), and readingthe thermometer scale. Let us analyze what is being done here.To set up a temperature scale, we pick a reference system r, which we call the
thermometer. For simplicity, we choose r to be homogeneous with a fixed composi-tion and a fixed pressure. Furthermore, we require that the substance of the ther-mometer must always expand when heated. This requirement ensures that at fixedpressure the volume of the thermometer r will define the state of system r uniquely—two states of r with different volumes at fixed pressure will not be in thermal equilib-rium and must be assigned different temperatures. Liquid water is unsuitable for athermometer since when heated at 1 atm, it contracts at temperatures below 4°C andexpands above 4°C (Fig. 1.5). Water at 1 atm and 3°C has the same volume as waterat 1 atm and 5°C, so the volume of water cannot be used to measure temperature.Liquid mercury always expands when heated, so let us choose a fixed amount of liquidmercury at 1 atm pressure as our thermometer.We now assign a different numerical value of the temperature u to each differentvolume Vr of the thermometer r. The way we do this is arbitrary. The simplestapproach is to take u as a linear function of Vr. We therefore define the temperature tobe u ; aVr 1 b, where Vr is the volume of a fixed amount of liquid mercury at 1 atmpressure and a and b are constants, with a being positive (so that states which are ex-perienced physiologically as being hotter will have larger u values). Once a and b arespecified, a measurement of the thermometer’s volume Vr gives its temperature u.The mercury for our thermometer is placed in a glass container that consists of abulb connected to a narrow tube. Let the cross-sectional area of the tube be A, and letthe mercury rise to a length l in the tube. The mercury volume equals the sum of themercury volumes in the bulb and the tube, so (1.3)where c and d are constants defined as c ; aA and d ; aVbulb 1 b.To fix c and d, we define the temperature of equilibrium between pure ice and liq-uid water saturated with dissolved air at 1 atm pressure as 0°C (for centigrade), andwe define the temperature of equilibrium between pure liquid water and water vaporat 1 atm pressure (the normal boiling point of water) as 100°C. These points are calledthe ice point and the steam point. Since our scale is linear with the length of the mer-cury column, we mark off 100 equal intervals between 0°C and 100°C and extend themarks above and below these temperatures.u ; aVr 1 b 5 a1Vbulb 1 Al 2 1 b 5 aAl 1 1aVbulb 1 b 2 ; cl 1 d Section 1.3Temperature7

Figure 1.5Volume of 1 g of water at 1 atmversus temperature. Below 0°C,the water is supercooled (Sec. 7.4).



Chapter 1Thermodynamics8 Having armed ourselves with a thermometer, we can now find the temperature ofany system B. To do so, we put system B in contact with the thermometer, wait untilthermal equilibrium is achieved, and then read the thermometer’s temperature fromthe graduated scale. Since B is in thermal equilibrium with the thermometer, B’s tem-perature equals that of the thermometer.Note the arbitrary way we defined our scale. This scale depends on the expansionproperties of a particular substance, liquid mercury. If we had chosen ethanol insteadof mercury as the thermometric fluid, temperatures on the ethanol scale would differslightly from those on the mercury scale. Moreover, there is at this point no reason,apart from simplicity, for choosing a linear relation between temperature and mercuryvolume. We could just as well have chosen u to vary as aV2r 1 b. Temperature is a fun-damental concept of thermodynamics, and one naturally feels that it should be formu-lated less arbitrarily. Some of the arbitrariness will be removed in Sec. 1.5, where theideal-gas temperature scale is defined. Finally, in Sec. 3.6 we shall define the mostfundamental temperature scale, the thermodynamic scale. The mercury centigradescale defined in this section is not in current scientific use, but we shall use it until wedefine a better scale in Sec. 1.5.Let systems A and B have the same temperature (uA 5 uB), and let systems B andC have different temperatures (uB Þ uC). Suppose we set up a second temperaturescale using a different fluid for our thermometer and assigning temperature values ina different manner. Although the numerical values of the temperatures of systems A,B, and C on the second scale will differ from those on the first temperature scale, itfollows from the zeroth law that on the second scale systems A and B will still havethe same temperature, and systems B and C will have different temperatures. Thus, al-though numerical values on any temperature scale are arbitrary, the zeroth law assuresus that the temperature scale will fulfill its function of telling whether or not two sys-tems are in thermal equilibrium.Since virtually all physical properties change with temperature, properties otherthan volume can be used to measure temperature. With a resistance thermometer, onemeasures the electrical resistance of a metal wire. A thermistor (which is used in a dig-ital fever thermometer) is based on the temperature-dependent electrical resistance ofa semiconducting metal oxide. A thermocouple involves the temperature dependenceof the electric potential difference between two different metals in contact (Fig. 13.4).Very high temperatures can be measured with an optical pyrometer, which examinesthe light emitted by a hot solid. The intensity and frequency distribution of this lightdepend on the temperature (Fig. 17.1b), and this allows the solid’s temperature to befound (see Quinn, chap. 7; references with the author’s name italicized are listed in theBibliography).Temperature is an abstract property that is not measured directly. Instead, we mea-sure some other property (for example, volume, electrical resistance, emitted radia-tion) whose value depends on temperature and (using the definition of the temperaturescale and calibration of the measured property to that scale) we deduce a temperaturevalue from the measured property.Thermodynamics is a macroscopic science and does not explain the molecularmeaning of temperature. We shall see in Sec. 14.3 that increasing temperature corre-sponds to increasing average molecular kinetic energy, provided the temperature scaleis chosen to give higher temperatures to hotter states.The concept of temperature does not apply to a single atom, and the minimum-sizesystem for which a temperature can be assigned is not clear. A statistical-mechanicalcalculation on a very simple model system indicated that temperature might not be ameaningful concept for some nanoscopic systems [M. Hartmann, ContemporaryPhysics, 47, 89 (2006); X. Wang et al., Am. J. Phys., 75, 431 (2007)].



1.4 THE MOLEWe now review the concept of the mole, which is used in chemical thermodynamics. The ratio of the average mass of an atom of an element to the mass of some cho-sen standard is called the atomic weight or relative atomic mass Ar of that element(the r stands for “relative”). The standard used since 1961 is times the mass of theisotope 12C. The atomic weight of 12C is thus exactly 12, by definition. The ratio of theaverage mass of a molecule of a substance to times the mass of a 12C atom is calledthe molecular weight or relative molecular mass Mr of that substance. The statementthat the molecular weight of H2O is 18.015 means that a water molecule has on theaverage a mass that is 18.015/12 times the mass of a 12C atom. We say “on the aver-age” to acknowledge the existence of naturally occurring isotopes of H and O. Sinceatomic and molecular weights are relative masses, these “weights” are dimensionlessnumbers. For an ionic compound, the mass of one formula unit replaces the mass ofone molecule in the definition of the molecular weight. Thus, we say that the molec-ular weight of NaCl is 58.443, even though there are no individual NaCl molecules inan NaCl crystal.The number of 12C atoms in exactly 12 g of 12C is called Avogadro’s number.Experiment (Sec. 18.2) gives 6.02 3 1023 as the value of Avogadro’s number.Avogadro’s number of 12C atoms has a mass of 12 g, exactly. What is the mass ofAvogadro’s number of hydrogen atoms? The atomic weight of hydrogen is 1.0079, soeach H atom has a mass 1.0079/12 times the mass of a 12C atom. Since we have equalnumbers of H and 12C atoms, the total mass of hydrogen is 1.0079/12 times the totalmass of the 12C atoms, which is (1.0079/12) (12 g) 5 1.0079 g; this mass in grams isnumerically equal to the atomic weight of hydrogen. The same reasoning shows thatAvogadro’s number of atoms of any element has a mass of Ar grams, where Ar is theatomic weight of the element. Similarly, Avogadro’s number of molecules of a sub-stance whose molecular weight is Mr will have a mass of Mr grams.The average mass of an atom or molecule is called the atomic mass or the mole-
cular mass. Molecular masses are commonly expressed in units of atomic mass units(amu), where 1 amu is one-twelfth the mass of a 12C atom. With this definition, theatomic mass of C is 12.011 amu and the molecular mass of H2O is 18.015 amu. Since12 g of 12C contains 6.02 3 1023 atoms, the mass of a 12C atom is (12 g)/(6.02 3 1023)and 1 amu 5 (1 g)/(6.02 3 1023) 5 1.66 3 10224 g. The quantity 1 amu is called 1 dal-ton by biochemists, who express molecular masses in units of daltons.A mole of some substance is defined as an amount of that substance which con-tains Avogadro’s number of elementary entities. For example, a mole of hydrogenatoms contains 6.02 3 1023 H atoms; a mole of water molecules contains 6.02 3 1023H2O molecules. We showed earlier in this section that, if Mr,i is the molecular weightof species i, then the mass of 1 mole of species i equals Mr,i grams. The mass permole of a pure substance is called its molar mass M. For example, for H2O, M 518.015 g/mole. The molar mass of substance i is

(1.4)*where mi is the mass of substance i in a sample and ni is the number of moles of i inthe sample. The molar mass Mi and the molecular weight Mr,i of i are related by Mi 5Mr,i 3 1 g/mole, where Mr,i is a dimensionless number.After Eq. (1.4), ni was called “the number of moles” of species i. Strictly speak-ing, this is incorrect. In the officially recommended SI units (Sec. 2.1), the amount of
substance (also called the chemical amount) is taken as one of the fundamentalphysical quantities (along with mass, length, time, etc.), and the unit of this physicalMi ;

mini112 112 Section 1.4The Mole9



Chapter 1Thermodynamics10 quantity is the mole, abbreviated mol. Just as the SI unit of mass is the kilogram, theSI unit of amount of substance is the mole. Just as the symbol mi stands for the massof substance i, the symbol ni stands for the amount of substance i. The quantity miis not a pure number but is a number times a unit of mass; for example, mi might be4.18 kg (4.18 kilograms). Likewise, ni is not a pure number but is a number times aunit of amount of substance; for example, ni might be 1.26 mol (1.26 moles). Thus thecorrect statement is that ni is the amount of substance i. The number of moles of i is apure number and equals ni /mol, since ni has a factor of 1 mol included in itself.Since Avogadro’s number is the number of molecules in one mole, the number ofmolecules Ni of species i in a system iswhere ni/mol is the number of moles of species i in the system. The quantity (Avogadro’s number)/mol is called the Avogadro constant NA. We have
(1.5)*Avogadro’s number is a pure number, whereas the Avogadro constant NA has units ofmole21.Equation (1.5) applies to any collection of elementary entities, whether they areatoms, molecules, ions, radicals, electrons, photons, etc. Written in the form ni 5 Ni/NA,Eq. (1.5) gives the definition of the amount of substance ni of species i. In this equa-tion, Ni is the number of elementary entities of species i.If a system contains ni moles of chemical species i and if ntot is the total numberof moles of all species present, then the mole fraction xi of species i is
(1.6)*The sum of the mole fractions of all species equals 1; x1 1 x2 1 ? ? ? 5 n1/ntot 1 n2/ntot 1

? ? ? 5 (n1 1 n2 1 ? ? ?)/ntot 5 ntot/ntot 5 1.
1.5 IDEAL GASESThe laws of thermodynamics are general and do not refer to the specific nature ofthe system under study. Before studying these laws, we shall describe the proper-ties of a particular kind of system, namely, an ideal gas. We shall then be able to il-lustrate the application of thermodynamic laws to an ideal-gas system. Ideal gasesalso provide the basis for a more fundamental temperature scale than the liquid-mercury scale of Sec. 1.3.

Boyle’s LawBoyle investigated the relation between the pressure and volume of gases in 1662 andfound that, for a fixed amount of gas kept at a fixed temperature, P and V are inverselyproportional: (1.7)where k is a constant and m is the gas mass. Careful investigation shows that Boyle’slaw holds only approximately for real gases, with deviations from the law approach-ing zero in the limit of zero pressure. Figure 1.6a shows some observed P-versus-Vcurves for 28 g of N2 at two temperatures. Figure 1.6b shows plots of PV versus P for28 g of N2. Note the near constancy of PV at low pressures (below 10 atm) and the sig-nificant deviations from Boyle’s law at high pressures.Note how the axes in Fig. 1.6 are labeled. The quantity P equals a pure numbertimes a unit; for example, P might be 4.0 atm 5 4.0 3 1 atm. Therefore, P/atm (wherePV 5 k  constant u, mxi ; ni>ntotNi 5 niNA  where NA 5 6.02 3 1023 mol21Ni 5 1ni>mol 2 # 1Avogadro,s number 2



the slash means “divided by”) is a pure number, and the scales on the axes are markedwith pure numbers. If P 5 4.0 atm, then P/atm 5 4.0. (If a column in a table is labeled103P/atm, then an entry of 5.65 in this column would mean that 103P/atm 5 5.65 andsimple algebra gives P 5 5.65 3 1023 atm.)Boyle’s law is understandable from the picture of a gas as consisting of a hugenumber of molecules moving essentially independently of one another. The pressureexerted by the gas is due to the impacts of the molecules on the walls. A decrease involume causes the molecules to hit the walls more often, thereby increasing the pres-sure. We shall derive Boyle’s law from the molecular picture in Chapter 14, startingfrom a model of the gas as composed of noninteracting point particles. In actuality, themolecules of a gas exert forces on one another, so Boyle’s law does not hold exactly.In the limit of zero density (reached as the pressure goes to zero or as the temperaturegoes to infinity), the gas molecules are infinitely far apart from one another, forcesbetween molecules become zero, and Boyle’s law is obeyed exactly. We say the gasbecomes ideal in the zero-density limit.
Pressure and Volume UnitsFrom the definition P ; F/A [Eq. (1.1)], pressure has dimensions of force divided byarea. In the SI system (Sec. 2.1), its units are newtons per square meter (N/m2), alsocalled pascals (Pa):

(1.8)*Because 1 m2 is a large area, the pascal is an inconveniently small unit of pressure, andits multiples the kilopascal (kPa) and megapascal (MPa) are often used: 1 kPa ; 103Pa and 1 MPa 5 106 Pa.Chemists customarily use other units. One torr (or 1 mmHg) is the pressure ex-erted at 0°C by a column of mercury one millimeter high when the gravitational ac-celeration has the standard value g 5 980.665 cm/s2. The downward force exerted bythe mercury equals its mass m times g. Thus a mercury column of height h, mass m,cross-sectional area A, volume V, and density r exerts a pressure P given by (1.9)P 5 F>A 5 mg>A 5 rVg>A 5 rAhg>A 5 rgh1 Pa ; 1 N>m2 Section 1.5Ideal Gases11

Figure 1.6Plots of (a) P versus V and (b) PV versus P for 1 mole of N2 gas at constant temperature.



Chapter 1Thermodynamics12 The density of mercury at 0°C and 1 atm is 13.5951 g/cm3. Converting this density tokg/m3 and using (1.9) with h 5 1 mm, we havesince 1 N 5 1 kg m s22 [Eq. (2.7)]. One atmosphere (atm) is defined as exactly 760 torr:(1.10)Another widely used pressure unit is the bar: (1.11)The bar is slightly less than 1 atm. The approximation
(1.12)*will usually be accurate enough for our purposes. See Fig. 1.7.Common units of volume are cubic centimeters (cm3), cubic decimeters (dm3),cubic meters (m3), and liters (L or l). The liter is defined as exactly 1000 cm3. Oneliter equals 103 cm3 5 103(1022 m)3 5 1023 m3 5 (1021 m)3 5 1 dm3, where onedecimeter (dm) equals 0.1 m.
(1.13)*

Charles’ LawCharles (1787) and Gay-Lussac (1802) measured the thermal expansion of gases andfound a linear increase in volume with temperature (measured on the mercury centi-grade scale) at constant pressure and fixed amount of gas: (1.14)where a1 and a2 are constants. For example, Fig. 1.8 shows the observed relation be-tween V and u for 28 g of N2 at a few pressures. Note the near linearity of the curves,which are at low pressures. The content of Charles’ law is simply that the thermal ex-pansions of gases and of liquid mercury are quite similar. The molecular explanationfor Charles’ law lies in the fact that an increase in temperature means the moleculesare moving faster and hitting the walls harder and more often. Therefore, the volumemust increase if the pressure is to remain constant.
The Ideal-Gas Absolute Temperature ScaleCharles’ law (1.14) is obeyed most accurately in the limit of zero pressure; but evenin this limit, gases still show small deviations from Eq. (1.14). These deviations aredue to small differences between the thermal-expansion behavior of ideal gases andV 5 a1 1 a2u  const. P, m1 liter 5 1 dm3

5 1000 cm31 bar < 750 torr1 bar ; 105 Pa 5 0.986923 atm 5 750.062 torr1 atm ; 760 torr 5 1.01325 3 105 Pa1 torr 5 133.322 kg m21 s22
5 133.322 N>m2

5 133.322 Pa 1 torr 5 a13.5951 gcm3 b a 1 kg103 g b a 102 cm1 m b3 19.80665 m>s2 2 11023 m 2
Figure 1.7Units of pressure. The scale islogarithmic.
Figure 1.8Plots of volume versus centigradetemperature for 1 mole of N2 gasat constant pressure.



that of liquid mercury, which is the basis for the u temperature scale. However, in thezero-pressure limit, the deviations from Charles’ law are the same for different gases.In the limit of zero pressure, all gases show the same temperature-versus-volume be-havior at constant pressure.Extrapolation of the N2 low-pressure V-versus-u curves in Fig. 1.8 to low temper-atures shows that they all intersect the u axis at the same point, approximately 2273°on the mercury centigrade scale. Moreover, extrapolation of such curves for any gas,not just N2, shows they intersect the u axis at 2273°. At this temperature, any idealgas is predicted to have zero volume. (Of course, the gas will liquefy before this tem-perature is reached, and Charles’ law will no longer be obeyed.)As noted, all gases have the same temperature-versus-volume behavior in thezero-pressure limit. Therefore, to get a temperature scale that is independent of theproperties of any one substance, we shall define an ideal-gas temperature scale T bythe requirement that the T-versus-V behavior of a gas be exactly linear (that is, obeyCharles’ law exactly) in the limit of zero pressure. Moreover, because it seems likelythat the temperature at which an ideal gas is predicted to have zero volume might wellhave fundamental significance, we shall take the zero of our ideal-gas temperaturescale to coincide with the zero-volume temperature. We therefore define the absolute
ideal-gas temperature T by the requirement that the relation T ; BV shall holdexactly in the zero-pressure limit, where B is a constant for a fixed amount of gas atconstant P, and where V is the gas volume. Any gas can be used.To complete the definition, we specify B by picking a fixed reference point andassigning its temperature. In 1954 it was internationally agreed to use the triple point(tr) of water as the reference point and to define the absolute temperature Ttr at thistriple point as exactly 273.16 K. The K stands for the unit of absolute temperature, the
kelvin, formerly called the degree Kelvin (°K). (The water triple point is the temper-ature at which pure liquid water, ice, and water vapor are in mutual equilibrium.) Atthe water triple point, we have 273.16 K ; Ttr 5 BVtr, and B 5 (273.16 K)/Vtr, whereVtr is the gas volume at Ttr. Therefore the equation T ; BV defining the absolute ideal-gas temperature scale becomes (1.15)How is the limit P → 0 taken in (1.15)? One takes a fixed quantity of gas at somepressure P, say 200 torr. This gas is put in thermal equilibrium with the body whose tem-perature T is to be measured, keeping P constant at 200 torr and measuring the volumeV of the gas. The gas thermometer is then put in thermal equilibrium with a water triple-point cell at 273.16 K, keeping P of the gas at 200 torr and measuring Vtr. The ratio V/Vtris then calculated for P 5 200 torr. Next, the gas pressure is reduced to, say, 150 torr,and the gas volume at this pressure is measured at temperature T and at 273.16 K; thisgives the ratio V/Vtr at P 5 150 torr. The operations are repeated at successively lowerpressures to give further ratios V/Vtr. These ratios are then plotted against P, and thecurve is extrapolated to P 5 0 to give the limit of V/Vtr (see Fig. 1.9). Multiplication ofthis limit by 273.16 K then gives the ideal-gas absolute temperature T of the body. Inpractice, a constant-volume gas thermometer is easier to use than a constant-pressureone; here, V/Vtr at constant P in (1.15) is replaced by P/Ptr at constant V.Accurate measurement of a body’s temperature with an ideal-gas thermometer istedious, and this thermometer is not useful for day-to-day laboratory work. What isdone instead is to use an ideal-gas thermometer to determine accurate values for sev-eral fixed points that cover a wide temperature range. The fixed points are triple pointsand normal melting points of certain pure substances (for example, O2, Ar, Zn, Ag). Thespecified values for these fixed points, together with specified interpolation formulasT ; 1273.16 K 2 limPS0 VVtr  const. P, m Section 1.5Ideal Gases13

Figure 1.9Constant-pressure gas thermometerplots to measure the normal boilingpoint (nbp) of H2O. Extrapolationgives Vnbp/Vtr 5 1.365955, so Tnbp 51.365955(273.16 K) 5 373.124 K
5 99.974°C.
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that use platinum resistance thermometers for temperatures between the fixed points,
constitute the International Temperature Scale of 1990 (ITS-90). The ITS-90 scale is
designed to reproduce the ideal-gas absolute scale within experimental error and is used
to calibrate laboratory thermometers. Details of ITS-90 are given in B. W. Mangum,
J. Res. Natl. Inst. Stand. Technol., 95, 69 (1990); Quinn, sec. 2-12 and appendix II.

Since the ideal-gas temperature scale is independent of the properties of any one
substance, it is superior to the mercury centigrade scale defined in Sec. 1.3. However,
the ideal-gas scale still depends on the limiting properties of gases. The thermody-
namic temperature scale, defined in Sec. 3.6, is independent of the properties of any
particular kind of matter. For now we shall use the ideal-gas scale.

The present definition of the Celsius (centigrade) scale t is in terms of the ideal-
gas absolute temperature scale T as follows:

(1.16)*
For the water triple-point Celsius temperature ttr, we have ttr /°C5 (273.16 K)/K2273.15
5 0.01, so ttr is exactly 0.01°C. On the present Celsius and Kelvin scales, the ice and
steam points (Sec. 1.3) are not fixed but are determined by experiment, and there is no
guarantee that these points will be at 0°C and 100°C. However, the value 273.16 K for the
water triple point and the number 273.15 in (1.16) were chosen to give good agreement
with the old centigrade scale, so we expect the ice and steam points to be little changed
from their old values. Experiment gives 0.00009°C for the ice point and for the steam
point gives 99.984°C on the thermodynamic scale and 99.974°C on the ITS-90 scale.

Since the absolute ideal-gas temperature scale is based on the properties of a gen-
eral class of substances (gases in the zero-pressure limit, where intermolecular forces
vanish), one might suspect that this scale has fundamental significance. This is true,
and we shall see in Eqs. (14.14) and (14.15) that the average kinetic energy of motion
of molecules through space in a gas is directly proportional to the absolute tempera-
ture T. Moreover, the absolute temperature T appears in a simple way in the law that
governs the distribution of molecules among energy levels; see Eq. (21.69), the
Boltzmann distribution law.

From Eq. (1.15), at constant P and m we have V/T 5 Vtr/Ttr. This equation holds
exactly only in the limit of zero pressure but is pretty accurate provided the pressure
is not too high. Since Vtr/Ttr is a constant for a fixed amount of gas at fixed P, we have

where K is a constant. This is Charles’ law. However, logically speaking, this equation
is not a law of nature but simply embodies the definition of the ideal-gas absolute tem-
perature scale T. After defining the thermodynamic temperature scale, we can once
again view V/T 5 K as a law of nature.
The General Ideal-Gas Equation
Boyle’s and Charles’ laws apply when T and m or P and m are held fixed. Now con-
sider a more general change in state of an ideal gas, in which the pressure, volume, and
temperature all change, going from P1, V1, T1 to P2, V2, T2, with m unchanged. To apply
Boyle’s and Charles’ laws, we imagine this process to be carried out in two steps:

Since T and m are constant in step (a), Boyle’s law applies and P1V1 5 k 5 P2Va;hence Va 5 P1V1/P2. Use of Charles’ law for step (b) gives Va/T1 5 V2 /T2. Substitution
of Va 5 P1V1/P2 into this equation gives P1V1/P2T1 5 V2/T2, and

(1.17)P1V1>T1 5 P2V2>T2  const. m, ideal gas

P1, V1, T1 ¡
1a2 P2, Va, T1 ¡

1b2 P2, V2, T2

V>T 5 K  const. P, m

t>°C ; T>K 2 273.15
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What happens if we vary the mass m of ideal gas while keeping P and T constant?Volume is an extensive quantity, so V is directly proportional to m for any one-phase,one-component system at constant T and P. Thus V/m is constant at constant T and P.Combining this fact with the constancy of PV/T at constant m, we readily find (Prob.1.24) that PV/mT remains constant for any variation in P, V, T, and m of any pure idealgas: PV/mT 5 c, where c is a constant. There is no reason for c to be the same for dif-ferent ideal gases, and in fact it is not. To obtain a form of the ideal-gas law that hasthe same constant for every ideal gas, we need another experimental observation.In 1808 Gay-Lussac noted that the ratios of volumes of gases that react with oneanother involve small whole numbers when these volumes are measured at the sametemperature and pressure. For example, one finds that two liters of hydrogen gas reactwith one liter of oxygen gas to form water. This reaction is 2H2 1 O2 → 2H2O, so thenumber of hydrogen molecules reacting is twice the number of oxygen molecules re-acting. The two liters of hydrogen must then contain twice the number of moleculesas does the one liter of oxygen, and therefore one liter of hydrogen will have the samenumber of molecules as one liter of oxygen at the same temperature and pressure. Thesame result is obtained for other gas-phase reactions. We conclude that equal volumesof different gases at the same temperature and pressure contain equal numbers of mol-ecules. This idea was first recognized by Avogadro in 1811. (Gay-Lussac’s law ofcombining volumes and Avogadro’s hypothesis are strictly true for real gases only inthe limit P → 0.) Since the number of molecules is proportional to the number ofmoles, Avogadro’s hypothesis states that equal volumes of different gases at the sameT and P have equal numbers of moles.Since the mass of a pure gas is proportional to the number of moles, the ideal-gaslaw PV/mT 5 c can be rewritten as PV/nT 5 R or n 5 PV/RT, where n is the numberof moles of gas and R is some other constant. Avogadro’s hypothesis says that, if P,V, and T are the same for two different gases, then n must be the same. But this canhold true only if R has the same value for every gas. R is therefore a universal con-stant, called the gas constant. The final form of the ideal-gas law is
(1.18)*Equation (1.18) incorporates Boyle’s law, Charles’ law (more accurately, the defini-tion of T), and Avogadro’s hypothesis.An ideal gas is a gas that obeys PV 5 nRT. Real gases obey this law only in thelimit of zero density, where intermolecular forces are negligible.Using M ; m/n [Eq. (1.4)] to introduce the molar mass M of the gas, we can writethe ideal-gas law asThis form enables us to find the molecular weight of a gas by measuring the volumeoccupied by a known mass at a known T and P. For accurate results, one does a seriesof measurements at different pressures and extrapolates the results to zero pressure(see Prob. 1.21). We can also write the ideal-gas law in terms of the density r5 m/V asThe only form worth remembering is PV 5 nRT, since all other forms are easilyderived from this one.The gas constant R can be evaluated by taking a known number of moles of somegas held at a known temperature and carrying out a series of pressure–volume mea-surements at successively lower pressures. Evaluation of the zero-pressure limit ofPV/nT then gives R (Prob. 1.20). The experimental result is
(1.19)*R 5 82.06 1cm3 atm 2 > 1mol K 2P 5 rRT>M  ideal gasPV 5 mRT>M  ideal gasPV 5 nRT  ideal gas Section 1.5Ideal Gases15



Chapter 1Thermodynamics16 Since 1 atm 5 101325 N/m2 [Eq. (1.10)], we have 1 cm3 atm 5 (1022 m)3 3 101325 N/m2
5 0.101325 m3 N/m2 5 0.101325 J. [One newton-meter 5 one joule (J); see Sec. 2.1.]Hence R 5 82.06 3 0.101325 J/(mol K), or

(1.20)*Using 1 atm 5 760 torr and 1 bar < 750 torr, we find from (1.19) that R 5 83.145(cm3 bar)/(mol K). Using 1 calorie (cal) 5 4.184 J [Eq. (2.44)], we find
(1.21)*Accurate values of physical constants are listed inside the back cover.

Ideal Gas MixturesSo far, we have considered only a pure ideal gas. In 1810 Dalton found that the pres-sure of a mixture of gases equals the sum of the pressures each gas would exert ifplaced alone in the container. (This law is exact only in the limit of zero pressure.) Ifn1 moles of gas 1 is placed alone in the container, it would exert a pressure n1RT/V(where we assume the pressure low enough for the gas to behave essentially ideally).Dalton’s law asserts that the pressure in the gas mixture is P 5 n1RT/V 1 n2RT/V 1

? ? ? 5 (n1 1 n2 1 ? ? ?)RT/V 5 ntotRT/V, so
(1.22)*Dalton’s law makes sense from the molecular picture of gases. Ideal-gas molecules donot interact with one another, so the presence of gases 2, 3, . . . has no effect on gas 1,and its contribution to the pressure is the same as if it alone were present. Each gasacts independently, and the pressure is the sum of the individual contributions. For realgases, the intermolecular interactions in a mixture differ from those in a pure gas, andDalton’s law does not hold accurately.The partial pressure Pi of gas i in a gas mixture (ideal or nonideal) is defined as
(1.23)*where xi 5 ni/ntot is the mole fraction of i in the mixture and P is the mixture’spressure. For an ideal gas mixture, Pi 5 xiP 5 (ni/ntot) (ntot RT/V ) and
(1.24)*The quantity niRT/V is the pressure that gas i of the mixture would exert if it alonewere present in the container. However, for a nonideal gas mixture, the partial pres-sure Pi as defined by (1.23) is not necessarily equal to the pressure that gas i wouldexert if it alone were present.

EXAMPLE 1.1 Density of an ideal gasFind the density of F2 gas at 20.0°C and 188 torr.The unknown is the density r, and it is often a good idea to start by writ-ing the definition of what we want to find: r ; m/V. Neither m nor V is given,so we seek to relate these quantities to the given information. The system is agas at a relatively low pressure, and it is a good approximation to treat it as anideal gas. For an ideal gas, we know that V 5 nRT/P. Substitution of V 5nRT/P into r 5 m/V gives r 5 mP/nRT. In this expression for r, we know Pand T but not m or n. However, we recognize that the ratio m/n is the mass permole, that is, the molar mass M. Thus r5 MP/RT. This expression contains onlyknown quantities, so we are ready to substitute in numbers. The molecularPi 5 niRT>V  ideal gas mixturePi ; xiP  any gas mixturePV 5 ntotRT  ideal gas mixtureR 5 1.987 cal> 1mol K 2R 5 8.3145 J> 1mol K 2 5 8.3145 1m3 Pa 2 > 1mol K 2



weight of F2 is 38.0, and its molar mass is M 5 38.0 g/mol. The absolute temper-ature is T 5 20.0° 1 273.15° 5 293.2 K. Since we know a value of R involvingatmospheres, we convert P to atmospheres: P 5 (188 torr) (1 atm/760 torr) 50.247 atm. ThenNote that the units of temperature, pressure, and amount of substance(moles) canceled. The fact that we ended up with units of grams per cubic cen-timeter, which is a correct unit for density, provides a check on our work. It isstrongly recommended that the units of every physical quantity be written downwhen doing calculations.
ExerciseFind the molar mass of a gas whose density is 1.80 g/L at 25.0°C and 880 torr.(Answer: 38.0 g/mol.)

1.6 DIFFERENTIAL CALCULUSPhysical chemistry uses calculus extensively. We therefore review some ideas of dif-ferential calculus. (In the novel Arrowsmith, Max Gottlieb asks Martin Arrowsmith,“How can you know physical chemistry without much mathematics?”)
Functions and LimitsTo say that the variable y is a function of the variable x means that for any givenvalue of x there is specified a value of y; we write y 5 f (x). For example, the area ofa circle is a function of its radius r, since the area can be calculated from r by theexpression pr2. The variable x is called the independent variable or the argument ofthe function f, and y is the dependent variable. Since we can solve for x in terms ofy to get x 5 g(y), it is a matter of convenience which variable is considered to be theindependent one. Instead of y 5 f (x), one often writes y 5 y(x).To say that the limit of the function f (x) as x approaches the value a is equal to c[which is written as limx→a f (x) 5 c] means that for all values of x sufficiently close toa (but not necessarily equal to a) the difference between f(x) and c can be made assmall as we please. For example, suppose we want the limit of (sin x)/x as x goes tozero. Note that (sin x)/x is undefined at x 5 0, since 0/0 is undefined. However, thisfact is irrelevant to determining the limit. To find the limit, we calculate the followingvalues of (sin x)/x, where x is in radians: 0.99833 for x 5 60.1, 0.99958 for x 5

60.05, 0.99998 for x 5 60.01, etc. ThereforeOf course, this isn’t a rigorous proof. Note the resemblance to taking the limit as P → 0in Eq. (1.15); in this limit both V and Vtr become infinite as P goes to zero, but the limithas a well-defined value even though q/q is undefined.
SlopeThe slope of a straight-line graph, where y is plotted on the vertical axis and x on thehorizontal axis, is defined as (y2 2 y1)/(x2 2 x1) 5 Dy/Dx, where (x1, y1) and (x2, y2)are the coordinates of any two points on the graph, and D (capital delta) denotes thelimxS0 sin xx 5 1r 5

MPRT 5
138.0 g mol21 2 10.247 atm 2

182.06 cm3 atm mol21 K21 2 1293.2 K 2 5 3.90 3 1024 g>cm3 Section 1.6Differential Calculus17



Chapter 1Thermodynamics18 change in a variable. If we write the equation of the straight line in the form y 5 mx 1b, it follows from this definition that the line’s slope equals m. The intercept of theline on the y axis equals b, since y 5 b when x 5 0.The slope of any curve at some point P is defined to be the slope of the straightline tangent to the curve at P. For an example of finding a slope, see Fig. 9.3. Studentssometimes err in finding a slope by trying to evaluate Dy/Dx by counting boxes on thegraph paper, forgetting that the scale of the y axis usually differs from that of the x axisin physical applications.In physical chemistry, one often wants to define new variables to convert an equa-tion to the form of a straight line. One then plots the experimental data using the newvariables and uses the slope or intercept of the line to determine some quantity.
EXAMPLE 1.2 Converting an equation to linear formAccording to the Arrhenius equation (16.66), the rate coefficient k of a chemicalreaction varies with absolute temperature according to the equation k 5where A and Ea are constants and R is the gas constant. Suppose we have mea-sured values of k at several temperatures. Transform the Arrhenius equation tothe form of a straight-line equation whose slope and intercept will enable A andEa to be found.The variable T appears as part of an exponent. By taking the logs of bothsides, we eliminate the exponential. Taking the natural logarithm of each side ofk 5 we get ln k 5 5 ln A 1 5 ln A 2 Ea/RT,where Eq. (1.67) was used. To convert the equation ln k ln A Ea/RT to astraight-line form, we define new variables in terms of the original variables kand T as follows: y ; ln k and x ; 1/T. This gives y 5 (2Ea/R)x 1 ln A.Comparison with y 5 mx 1 b shows that a plot of ln k on the y axis versus 1/Ton the x axis will have slope 2Ea/R and intercept ln A. From the slope andintercept of such a graph, Ea and A can be calculated.

ExerciseThe moles n of a gas adsorbed divided by the mass m of a solid adsorbent oftenvaries with gas pressure P according to n/m 5 aP/(1 1 bP), where a and b areconstants. Convert this equation to a straight-line form, state what should beplotted versus what, and state how the slope and intercept are related to a and b.(Hint: Take the reciprocal of each side.)
DerivativesLet y 5 f (x). Let the independent variable change its value from x to x 1 h; this willchange y from f (x) to f (x 1 h). The average rate of change of y with x over this inter-val equals the change in y divided by the change in x and isThe instantaneous rate of change of y with x is the limit of this average rate of changetaken as the change in x goes to zero. The instantaneous rate of change is called the
derivative of the function f and is symbolized by f 9:

(1.25)*f ¿1x 2 ; limhS0 f 1x 1 h 2 2 f 1x 2h 5 lim
¢xS0 

¢y
¢x¢y

¢x 5
f 1x 1 h 2 2 f 1x 2
1x 1 h 2 2 x 5

f 1x 1 h 2 2 f 1x 2h 25

ln1e2Ea>RT 2ln1Ae2Ea>RT 2Ae2Ea>RT, Ae2Ea>RT,



Figure 1.10 shows that the derivative of the function y 5 f (x) at a given point is equalto the slope of the curve of y versus x at that point.As a simple example, let y 5 x2. ThenThe derivative of x2 is 2x.A function that has a sudden jump in value at a certain point is said to be discon-
tinuous at that point. An example is shown in Fig. 1.11a. Consider the function y 5

uxu, whose graph is shown in Fig. 1.11b. This function has no jumps in value anywhereand so is everywhere continuous. However, the slope of the curve changes suddenlyat x 5 0. Therefore, the derivative y9 is discontinuous at this point; for negative x thefunction y equals 2x and y9 equals 21, whereas for positive x the function y equals xand y9 equals 11.Since f 9(x) is defined as the limit of Dy/Dx as Dx goes to zero, we know that, forsmall changes in x and y, the derivative f 9(x) will be approximately equal to Dy/Dx.Thus Dy < f 9(x) Dx for Dx small. This equation becomes more and more accurate as
Dx gets smaller. We can conceive of an infinitesimally small change in x, which wesymbolize by dx. Denoting the corresponding infinitesimally small change in y by dy,we have dy 5 f 9(x) dx, or

(1.26)*The quantities dy and dx are called differentials. Equation (1.26) gives the alternativenotation dy/dx for a derivative. Actually, the rigorous mathematical definition of dxand dy does not require these quantities to be infinitesimally small; instead they canbe of any magnitude. (See any calculus text.) However, in our applications of calculusto thermodynamics, we shall always conceive of dy and dx as infinitesimal changes.Let a and n be constants, and let u and v be functions of x; u 5 u(x) and v 5 v(x).Using the definition (1.25), one finds the following derivatives:
(1.27)*The chain rule is often used to find derivatives. Let z be a function of x, where xis a function of r; z 5 z(x), where x 5 x(r). Then z can be expressed as a function of r;z 5 z(x) 5 z[x(r)] 5 g(r), where g is some function. The chain rule states that dz/dr 5(dz /dx) (dx/dr). For example, suppose we want (d/dr) sin 3r2. Let z 5 sin x and x 53r2. Then z 5 sin 3r2, and the chain rule gives dz/dr 5 (cos x) (6r) 5 6r cos 3r2.Equations (1.26) and (1.27) give the following formulas for differentials:
(1.28)*We often want to find a maximum or minimum of some function y(x). For afunction with a continuous derivative, the slope of the curve is zero at a maximum ord1au 2 5 a du,  d1u 1 v 2 5 du 1 dv,  d1uv 2 5 u dv 1 v dud1xn 2 5 nxn21 dx,  d1eax 2 5 aeax dxd1u>v 2dx 5

d1uv
21 2dx 5 2uv

22
 

dvdx 1 v
21

 

dudxd1u 1 v 2dx 5
dudx 1

dvdx ,  

d1uv 2dx 5 u 

dvdx 1 v 

dudxd ln axdx 5
1x ,  

d sin axdx 5 a cos ax,  

d cos axdx 5 2a sin axdadx 5 0,  

d1au 2dx 5 a dudx ,  

d1xn 2dx 5 nxn21,  

d1eax 2dx 5 aeaxdy 5 y¿1x 2 dxf ¿1x 2 5 limhS0 1x 1 h 2 2 2 x2h 5 limhS0 2xh 1 h2h 5 limhS0 12x 1 h 2 5 2x Section 1.6Differential Calculus19

Figure 1.10As point 2 approaches point 1, thequantity Dy/Dx 5 tan u approachesthe slope of the tangent to thecurve at point 1.
Figure 1.11(a) A discontinuous function. (b) The function y 5 uxu.



Chapter 1Thermodynamics20 minimum point (Fig. 1.12). Hence to locate an extremum, we look for the pointswhere dy/dx 5 0.The function dy/dx is the first derivative of y. The second derivative d2y/dx2 isdefined as the derivative of the first derivative: d2y/dx2 ; d(dy/dx)/dx.
Partial DerivativesIn thermodynamics we usually deal with functions of two or more variables. Let z be afunction of x and y; z 5 f(x, y). We define the partial derivative of z with respect to x as(1.29)This definition is analogous to the definition (1.25) of the ordinary derivative, in thatif y were a constant instead of a variable, the partial derivative (­z/­x)y would becomejust the ordinary derivative dz /dx. The variable being held constant in a partial deriv-ative is often omitted and (­z /­x)y written simply as ­z/­x. In thermodynamics thereare many possible variables, and to avoid confusion it is essential to show which vari-ables are being held constant in a partial derivative. The partial derivative of z with re-spect to y at constant x is defined similarly to (1.29):There may be more than two independent variables. For example, let z 5 g(w, x, y).The partial derivative of z with respect to x at constant w and y isHow are partial derivatives found? To find (­z/­x)y we take the ordinary derivativeof z with respect to x while regarding y as a constant. For example, if z 5 x2y3 1 eyx,then (­z/­x)y 5 2xy3 1 yeyx; also, (­z/­y)x 5 3x2y2 1 xeyx.Let z 5 f (x, y). Suppose x changes by an infinitesimal amount dx while y remainsconstant. What is the infinitesimal change dz in z brought about by the infinitesimalchange in x? If z were a function of x only, then [Eq. (1.26)] we would have dz 5(dz /dx) dx. Because z depends on y also, the infinitesimal change in z at constant y isgiven by the analogous equation dz 5 (­z /­x)y dx. Similarly, if y were to undergo aninfinitesimal change dy while x were held constant, we would have dz 5 (­z /­y)x dy.If now both x and y undergo infinitesimal changes, the infinitesimal change in z is thesum of the infinitesimal changes due to dx and dy:

(1.30)*In this equation, dz is called the total differential of z(x, y). Equation (1.30) is oftenused in thermodynamics. An analogous equation holds for the total differential of afunction of more than two variables. For example, if z 5 z(r, s, t), thenThree useful partial-derivative identities can be derived from (1.30). For an infin-itesimal process in which y does not change, the infinitesimal change dy is 0, and(1.30) becomes (1.31)dzy 5 a 0z
0x by dxydz 5 a 0z

0r bs,t dr 1 a 0z
0s br,t ds 1 a 0z

0t br,s dtdz 5 a 0z
0x by dx 1 a 0z

0y bx dya 0z
0x bw, y ; lim

¢xS0 g1w, x 1 ¢x, y 2 2 g1w, x, y 2
¢xa 0z

0y bx ; lim
¢yS0 f 1x, y 1 ¢y 2 2 f 1x, y 2

¢ya 0z
0x by ; lim

¢xS0 f 1x 1 ¢x, y 2 2 f 1x, y 2
¢xFigure 1.12Horizontal tangent at maximumand minimum points.



where the y subscripts on dz and dx indicate that these infinitesimal changes occur atconstant y. Division by dzy givessince from the definition of the partial derivative, the ratio of infinitesimals dxy /dzyequals (­x/­z)y. Therefore
(1.32)*Note that the same variable, y, is being held constant in both partial derivatives in(1.32). When y is held constant, there are only two variables, x and z, and you willprobably recall that dz /dx 5 1/(dx/dz).For an infinitesimal process in which z stays constant, Eq. (1.30) becomes (1.33)Dividing by dyz and recognizing that dxz /dyz equals (­x/­y)z, we getwhere (1.32) with x and y interchanged was used. Multiplication by (­y/­z)x gives
(1.34)*Equation (1.34) looks intimidating but is actually easy to remember because of thesimple pattern of variables: ­x/­y, ­y/­z, ­z/­x; the variable held constant in each par-tial derivative is the one that doesn’t appear in that derivative.Sometimes students wonder why the ­y’s, ­z’s, and ­x’s in (1.34) don’t cancel togive 11 instead of 21. One can cancel ­y’s etc. only when the same variable is heldconstant in each partial derivative. The infinitesimal change dyz in y with z held con-stant while x varies is not the same as the infinitesimal change dyx in y with x heldconstant while z varies. [Note that (1.32) can be written as (­z/­x)y(­x/­z)y 5 1; here,cancellation occurs.]Finally, let dy in (1.30) be zero so that (1.31) holds. Let u be some other variable.Division of (1.31) by duy gives
(1.35)*The ­x’s in (1.35) can be canceled because the same variable is held constant in eachpartial derivative.A function of two independent variables z(x, y) has the following four secondpartial derivatives:
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Chapter 1Thermodynamics22 Provided ­2z/(­x ­y) and ­2z/(­y ­x) are continuous, as is generally true in physicalapplications, one can show that they are equal (see any calculus text):
(1.36)*The order of partial differentiation is immaterial.Fractions are sometimes written with a slant line. The convention is that

1.7 EQUATIONS OF STATEExperiment generally shows the thermodynamic state of a homogeneous system with afixed composition to be specified when the two variables P and T are specified. If thethermodynamic state is specified, this means the volume V of the system is specified.Given values of P and T of a fixed-composition system, the value of V is determined.But this is exactly what is meant by the statement that V is a function of P and T.Therefore, V 5 u(P, T), where u is a function that depends on the nature of the system.If the restriction of fixed composition is dropped, the state of the system will dependon its composition as well as on P and T. We then have (1.37)where n1, n2, . . . are the numbers of moles of substances 1, 2, . . . in the homogeneoussystem and f is some function. This relation between P, T, n1, n2, . . . , and V is calleda volumetric equation of state, or, more simply, an equation of state. If the systemis heterogeneous, each phase will have its own equation of state.For a one-phase system composed of n moles of a single pure substance, the equa-tion of state (1.37) becomes V 5 f (P, T, n), where the function f depends on the natureof the system; f for liquid water differs from f for ice and from f for liquid benzene. Ofcourse, we can solve the equation of state for P or for T to get the alternative form P 5g(V, T, n) or T 5 h(P, V, n), where g and h are certain functions. The laws of thermo-dynamics are general and cannot be used to deduce equations of state for particularsystems. Equations of state must be determined experimentally. One can also usestatistical mechanics to deduce an approximate equation of state starting from someassumed form for the intermolecular interactions in the system.An example of an equation of state is PV 5 nRT, the equation of state of an idealgas. In reality, no gas obeys this equation of state.The volume of a one-phase, one-component system is clearly proportional to thenumber of moles n present at any given T and P. Therefore the equation of state forany pure one-phase system can be written in the formwhere the function k depends on what substance is being considered. Since we usuallydeal with closed systems (n fixed), it is convenient to eliminate n and write the equa-tion of state using only intensive variables. To this end, we define the molar volumeVm of any pure, one-phase system as the volume per mole:
(1.38)*Vm is a function of T and P; Vm 5 k(T, P). For an ideal gas, Vm 5 RT/P. The m sub-script in Vm is sometimes omitted when it is clear that a molar volume is meant. (Acommonly used alternative symbol for Vm is .)V2Vm ; V>nV 5 nk1T, P 2V 5 f 1P, T, n1, n2, . . . 2a>bc 1 d ;

abc 1 d02z
0x 0y 5

02z
0y 0x



For any extensive property of a pure one-phase system, we can define a corre-sponding molar quantity. For example, the molar mass of a substance is m/n [Eq. (1.4)].What about equations of state for real gases? We shall see in Chapter 14 that ig-noring forces between the molecules leads to the ideal-gas equation of state PV 5nRT. Actually, molecules initially attract each other as they approach and then repeleach other when they collide. To allow for intermolecular forces, van der Waals in1873 modified the ideal-gas equation to give the van der Waals equation (1.39)Each gas has its own a and b values. Determination of a and b from experimental data isdiscussed in Sec. 8.4, which lists some a and b values. Subtraction of nb from V correctsfor intermolecular repulsion. Because of this repulsion, the volume available to the gasmolecules is less than the volume V of the container. The constant b is approximately thevolume of one mole of the gas molecules themselves. (In a liquid, the molecules are quiteclose together, so b is roughly the same as the molar volume of the liquid.) The terman2/V 2 allows for intermolecular attraction. These attractions tend to make the pressureexerted by the gas [given by the van der Waals equation as P 5 nRT/(V 2 nb) 2 an2/V 2]less than that predicted by the ideal-gas equation. The parameter a is a measure of thestrength of the intermolecular attraction; b is a measure of molecular size.For most liquids and solids at ordinary temperatures and pressures, an approxi-mate equation of state is (1.40)where c1, . . . , c5 are positive constants that must be evaluated by fitting observedVm versus T and P data. The term c1 is much larger than each of the other terms, so Vmof the liquid or solid changes only slowly with T and P. In most work with solidsor liquids, the pressure remains close to 1 atm. In this case, the terms involving P canbe neglected to give Vm 5 c1 1 c2T 1 c3T 2. This equation is often written in theform Vm 5 Vm,0(1 1 At 1 Bt2), where Vm,0 is the molar volume at 0°C and t is theCelsius temperature. Values of the constants A and B are tabulated in handbooks.The terms c2T 1 c3T 2 in (1.40) indicate that Vm usually increases as T increases. Theterms 2c4P 2 c5PT indicate that Vm decreases as P increases.For a single-phase, pure, closed system, the equation of state of the system can bewritten in the form Vm 5 k(T, P). One can make a three-dimensional plot of the equationof state by plotting P, T, and Vm on the x, y, and z axes. Each possible state of the systemgives a point in space, and the locus of all such points gives a surface whose equation isthe equation of state. Figure 1.13 shows the equation-of-state surface for an ideal gas.If we hold one of the three variables constant, we can make a two-dimensionalplot. For example, holding T constant at the value T1, we have PVm 5 RT1 as the equa-tion of state of an ideal gas. An equation of the form xy 5 constant gives a hyperbolawhen plotted. Choosing other values of T, we get a series of hyperbolas (Fig. 1.6a).The lines of constant temperature are called isotherms, and a constant-temperatureprocess is called an isothermal process. We can also hold either P or Vm constant andplot isobars (P constant) or isochores (Vm constant).Figure 1.14 shows some isotherms and isobars of liquid water.We shall find that thermodynamics enables us to relate many thermodynamicproperties of substances to partial derivatives of P, Vm, and T with respect to one an-other. This is useful because these partial derivatives can be readily measured. Thereare six such partial derivatives:
a 0Vm
0T bP, a 0Vm

0P bT, a 0P
0Vm bT, a 0P

0T bVm, a 0T0Vm bP, a 0T
0P bVmVm 5 c1 1 c2T 1 c3T 2
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an2V 2 b 1V 2 nb 2 5 nRT Section 1.7Equations of State23

Figure 1.13Equation-of-state surface for anideal gas. 
Figure 1.14Molar volume of H2O(l) plottedversus P and versus T.



Chapter 1Thermodynamics24 The relation (­z/­x)y 5 1/(­x/­z)y [Eq. (1.32)] shows that three of these six are the re-ciprocals of the other three: (1.41)Furthermore, the relation (­x/­y)z(­y/­z)x(­z/­x)y 5 21 [Eq. (1.34)] with x, y, and zreplaced by P, Vm, and T, respectively, gives (1.42)where (­z/­x)y 5 1/(­x/­z)y was used twice.Hence there are only two independent partial derivatives: (­Vm/­T)P and(­Vm/­P)T. The other four can be calculated from these two and need not be measured.We define the thermal expansivity (or cubic expansion coefficient) a (alpha) and the
isothermal compressibility k (kappa) of a substance by

(1.43)*
(1.44)*

a and k tell how fast the volume of a substance increases with temperature and de-creases with pressure. The purpose of the 1/V factor in their definitions is to makethem intensive properties. Usually, a is positive; however, liquid water decreases involume with increasing temperature between 0°C and 4°C at 1 atm. One can provefrom the laws of thermodynamics that k must always be positive (see Zemansky andDittman, sec. 14-9, for the proof). Equation (1.42) can be written as (1.45)
EXAMPLE 1.3 A and k of an ideal gasFor an ideal gas, find expressions for a and k and verify that Eq. (1.45) holds.To find a and k from the definitions (1.43) and (1.44), we need the partialderivatives of Vm. We therefore solve the ideal-gas equation of state PVm 5 RTfor Vm and then differentiate the result. We have Vm 5 RT/P. Differentiation withrespect to T gives (­Vm/­T )P 5 R/P. Thus (1.46)(1.47)(1.48)But from (1.45), we have 5a/k5 T21/P21 5 P/T 5 nRTV21/T 5 R/Vm,which agrees with (1.48).10P>0T 2Vma 0P
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Exercise
For a gas obeying the equation of state Vm 5 RT/P 1 B(T), where B(T) is a certain
function of T, (a) find a and k; (b) find in two different ways. [Answer:
a (R/P dB/dT)/Vm; k RT/VmP2; P/T P2(dB/dT)/RT.]

For solids, a is typically 1025 to 1024 K21. For liquids, a is typically 1023.5 to
1023 K21. For gases, a can be estimated from the ideal-gas a, which is 1/T; for tem-
peratures of 100 to 1000 K, a for gases thus lies in the range 1022 to 1023 K21.

For solids, k is typically 1026 to 1025 atm21. For liquids, k is typically 1024
atm21. Equation (1.47) for ideal gases gives k as 1 and 0.1 atm21 at P equal to 1 and
10 atm, respectively. Solids and liquids are far less compressible than gases because
there isn’t much space between molecules in liquids and solids.

The quantities a and k can be used to find the volume change produced by a
change in T or P.

EXAMPLE 1.4 Expansion due to a temperature increase
Estimate the percentage increase in volume produced by a 10°C temperature in-
crease in a liquid with the typical a value 0.001 K21, approximately independent
of temperature.

Equation (1.43) gives dVP 5 aV dTP. Since we require only an approximate
answer and since the changes in T and V are small (a is small), we can approx-
imate the ratio dVP /dTP by the ratio DVP /DTP of finite changes to get DVP /V <
a DTP 5 (0.001 K21) (10 K) 5 0.01 5 1%.
Exercise
For water at 80°C and 1 atm, a 5 6.4127 3 1024 K21 and r 5 0.971792 g/cm3.
Using the approximation dVP /dTP < DVP /DTP for DTP small, find the density of
water at 81°C and 1 atm and compare with the true value 0.971166 g/cm3.
(Answer: 0.971169 g/cm3.)

1.8 INTEGRAL CALCULUS

Differential calculus was reviewed in Sec. 1.6. Before reviewing integral calculus, we
recall some facts about sums.
Sums
The definition of the summation notation is

(1.49)*
For example, S3i51 i2 5 12 1 22 1 32 5 14. When the limits of a sum are clear, they
are often omitted. Some identities that follow from (1.49) are (Prob. 1.59)

(1.50)*
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Chapter 1Thermodynamics26

Integral CalculusFrequently one wants to find a function y(x) whose derivative is known to be a certainfunction f (x); dy/dx 5 f (x). The most general function y that satisfies this equation iscalled the indefinite integral (or antiderivative) of f(x) and is denoted by e f (x) dx.
(1.52)*The function f (x) being integrated in (1.52) is called the integrand.Since the derivative of a constant is zero, the indefinite integral of any functioncontains an arbitrary additive constant. For example, if f(x) 5 x, its indefinite integraly(x) is x2 1 C, where C is an arbitrary constant. This result is readily verified byshowing that y satisfies (1.52), that is, by showing that (d/dx) ( x2 C) x. To savespace, tables of indefinite integrals usually omit the arbitrary constant C.From the derivatives given in Sec. 1.6, it follows that
(1.53)*
(1.54)*
(1.55)*
(1.56)*where a and n are nonzero constants and C is an arbitrary constant. For more compli-cated integrals than those in Eqs. (1.53) through (1.56), use a table of integrals or thewebsite integrals.wolfram.com, which does indefinite integrals at no charge.A second important concept in integral calculus is the definite integral. Let f (x) bea continuous function, and let a and b be any two values of x. The definite integral off between the limits a and b is denoted by the symbol (1.57)The reason for the resemblance to the notation for an indefinite integral will becomeclear shortly. The definite integral (1.57) is a number whose value is found from thefollowing definition. We divide the interval from a to b into n subintervals, each ofwidth Dx, where Dx 5 (b 2 a)/n (see Fig. 1.15). In each subinterval, we pick any pointwe please, denoting the chosen points by x1, x2, . . . , xn. We evaluate f (x) at each ofthe n chosen points and form the sum (1.58)We now take the limit of the sum (1.58) as the number of subintervals n goes to in-finity, and hence as the width Dx of each subinterval goes to zero. This limit is, by de-finition, the definite integral (1.57): (1.59)#

ba  

f 1x 2 dx ; lim
¢xS0 ani51 f 1xi 2¢xa

ni51 f 1xi 2¢x 5 f 1x1 2¢x 1 f 1x2 2¢x 1 . . . 1 f 1xn 2¢x#
ba  

f 1x 2 dx#  
sin ax dx 5 2

cos axa 1 C,  #  
cos ax dx 5

sin axa 1 C#  

1x  dx 5 ln x 1 C,  #  
eaxdx 5

eaxa 1 C#  
dx 5 x 1 C,  #  

xn dx 5
xn11n 1 1 1 C  where n Þ 21#  

af 1x 2 dx 5 a#  
f 1x 2 dx,  #  

3 f 1x 2 1 g1x 2 4 dx 5 #  
f 1x 2 dx 1 #  

g1x 2 dx51
1212 If dy>dx 5 f 1x 2  then y 5 # f 1x 2 dx



The motivation for this definition is that the quantity on the right side of (1.59) occursvery frequently in physical problems.Each term in the sum (1.58) is the area of a rectangle of width Dx and height f (xi).A typical rectangle is indicated by the shading in Fig. 1.15. As the limit Dx → 0 istaken, the total area of these n rectangles becomes equal to the area under the curvef (x) between a and b. Thus we can interpret the definite integral as an area. Areaslying below the x axis, where f (x) is negative, make negative contributions to the def-inite integral.Use of the definition (1.59) to evaluate a definite integral would be tedious. Thefundamental theorem of integral calculus (proved in any calculus text) enables us toevaluate a definite integral of f (x) in terms of an indefinite integral y(x) of f (x), as
(1.60)*For example, if f(x) 5 x, a 5 2, b 5 6, we can take y 5 x2 (or x2 plus some constant)and (1.60) gives e62 x dx 5 (62) 2 (22) 5 16.The integration variable x in the definite integral on the left side of (1.60) does notappear in the final result (the right side of this equation). It thus does not matter whatsymbol we use for this variable. If we evaluate e62 z dz, we still get 16. In general, 

eba f (x) dx 5 eba f (z) dz. For this reason the integration variable in a definite integral iscalled a dummy variable. (The integration variable in an indefinite integral is not adummy variable.) Similarly it doesn’t matter what symbol we use for the summationindex in (1.49). Replacement of i by j gives exactly the same sum on the right side,and i in (1.49) is a dummy index.Two identities that readily follow from (1.60) are eba f (x) dx 5 2eab f (x) dx and
eba f (x) dx 1 ecb f (x) dx 5 eca f (x) dx.An important method for evaluating integrals is a change in variables. For exam-ple, suppose we want e32 x exp (x2) dx. Let z ; x2; then dz 5 2x dx, andNote that the limits were changed in accord with the substitution z 5 x2.From (1.52), it follows that the derivative of an indefinite integral equals the inte-grand: (d/dx) e f (x) dx 5 f (x). Note, however, that a definite integral is simply a num-ber and not a function; therefore (d/dx) eba f (x) dx 5 0.#
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f 1x 2 dx Section 1.8Integral Calculus27

Figure 1.15Definition of the definite integral.



Chapter 1Thermodynamics28 Integration with respect to x for a function of two variables is defined similarly to(1.52) and (1.59). If y(x, z) is the most general function that satisfies (1.61)then the indefinite integral of f (x, z) with respect to x is (1.62)For example, if f (x, z) 5 xz3, then y(x, z) 5 x2z3 1 g(z), where g is an arbitrary func-tion of z. If y satisfies (1.61), one can show [in analogy with (1.60)] that a definite in-tegral of f (x, z) is given by (1.63)For example, e62 xz3 dx 5 (62)z3 1 g(z) 2 (22)z3 2 g(z) 5 16z3.The integrals (1.62) and (1.63) are similar to ordinary integrals of a function f (x)of a single variable in that we regard the second independent variable z in these inte-grals as constant during the integration process; z acts as a parameter rather than as avariable. (A parameter is a quantity that is constant in a particular circumstance butwhose value can change from one circumstance to another. For example, in Newton’ssecond law F 5 ma, the mass m is a parameter. For any one particular body, m is con-stant, but its value can vary from one body to another.) In contrast to the integrals(1.62) and (1.63), in thermodynamics we shall often integrate a function of two ormore variables in which all the variables are changing during the integration. Such in-tegrals are called line integrals and will be discussed in Chapter 2.An extremely common kind of physical chemistry problem is the use of the knownderivative dz/dx to find the change Dz brought about by the change Dx. This kind ofproblem is solved by integration. Typically, the property z is a function of two variablesx and y, and we want the change Dz due to Dx while property y is held constant. Weuse the partial derivative and it helps to write this partial derivative as
(1.64)*where dzy and dxy are the infinitesimal changes in z and in x, while y is held constant.

EXAMPLE 1.5 Change in volume with applied pressureFor liquid water at 25°C, isothermal-compressibility data in the pressure range 1 to401 bar are well fitted by the equation whereand . Thevolume of one gram of water at 25°C and 1 bar is 1.002961 cm3. Find the volumeof one gram of water at 25°C and 401 bar. Compare the value with the experi-mental value 0.985846 cm3.We need to find a volume change DV due to a change in pressure DP at con-stant T. The compressibility is related to the rate of change of V with respect toP at constant T. The definition (1.44) of k gives (1.65)k ; 2
1V a 0V0P b T 5 2

1V dVTdPTc 5 2.3214 3 10212 bar231026 bar21, b 5 21.1706 3 1028 bar22, a 5 45.259 3k 5 a 1 bP 1 cP2,a 0z
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where the subscripts on the differentials denote changes at constant T. We want tofind DV. Therefore, we need to integrate this equation. The two variables are V andP, since T is constant. To integrate, we need to first separate the variables, puttingeverything that depends on V on one side and everything that depends on P on theother side. k is an intensive quantity that depends on T and P, and T is constant, so
k belongs on the P side, as is obvious from the equation for k given in the state-ment of the problem. To separate the variables, we multiply (1.65) by dPT to getNext, we integrate both sides from the initial state P1, V1 to the final state P2, V2,where P1, V1, and P2 are known, and T is constant:which agrees with the true value 0.985846 cm3.
ExerciseA liquid with thermal expansivity a is initially at temperature and volume T1and V1. If the liquid is heated from T1 to T2 at constant pressure, find anexpression for V2 using the approximation that a is independent of T.[Answer:
ExerciseFor liquid water at 1 atm, thermal-expansivity data in the range 25°C to 50°Care well fitted by the equation where t is theCelsius temperature, andThe volume of one gram of water at 30°C and 1 atmis 1.004372 cm3. Find the volume of one gram of water at 50°C and 1 atm.Compare with the experimental value 1.012109 cm3. (Answer: 1.012109 cm3.)

LogarithmsIntegration of 1/x gives the natural logarithm ln x. Because logarithms are used so oftenin physical chemistry derivations and calculations, we now review their properties. Ifx 5 as, then the exponent s is said to be the logarithm (log) of x to the base a: if as 5x, then loga x 5 s. The most important base is the irrational number e 5 2.71828 . . . ,defined as the limit of (1 1 b)1/b as b → 0. Logs to the base e are called natural

g 5 25.4150 3 1028 K21.e 5 21.00871 3 1025 K21, f 5 1.20561 3 1025 K21,a 5 e 1 f 1t>°C 2 1 g1t>°C 2 2,ln V2 < ln V1 1 a1T2 2 T1 2 . 4 V2 5 0.985846 cm311.002961 cm3 2 >V2 5 1.017361ln 3 11.002961 cm3 2 >V2 4 5 0.01721231
13 12.3214 3 10212 bar23 2 14013

2 13 2bar32
12 11.1706 3 1028 bar22 2 14012

2 12 2bar2ln 3 11.002961 cm3 2 >V2 4 5 45.259 3 1026 bar21 1400 bar 221ln V2 2 ln V1 2 5 ln1V1>V2 2 5 a1P2 2 P1 2 1
12b1P22 2 P21 2 1

13c1P32 2 P31 22lnV 0V2V1 5 1aP 1
12bP2

1
13cP3 2 0P2P12#

V2V1 1V dV 5 #
P2P1 k dP 5 #

P2P1 1a 1 bP 1 cP2 2dPk dPT 5 2
1V dVT Section 1.8Integral Calculus29



Chapter 1Thermodynamics30

logarithms and are written as ln x. For practical calculations, one often uses logs tothe base 10, called common logarithms and written as log x, log10 x, or lg x. We have
(1.66)*(1.67)From (1.67), we have (1.68)From (1.67), it follows that ln es 5 s. Since eln x 5 x 5 ln e x, the exponential and nat-ural logarithmic functions are inverses of each other. The function e x is often writtenas exp x. Thus, exp x ; e x. Since e1 5 e, e0 5 1, and e2q 5 0, we have ln e 5 1,ln 1 5 0, and ln 0 5 2q. One can take the logarithm or the exponential of a dimen-sionless quantity only.Some identities that follow from the definition (1.67) are
(1.69)*
(1.70)*(1.71)To find the log of a number greater than 10100 or less than 102100, which cannotbe entered on most calculators, we use log(ab) 5 log a 1 log b and log 10b 5 b. Forexample,To find the antilog of a number greater than 100 or less than 2100, we proceed asfollows. If we know that log10 x 5 2184.585, then

1.9 STUDY SUGGESTIONSA common reaction to a physical chemistry course is for a student to think, “Thislooks like a tough course, so I’d better memorize all the equations, or I won’t do well.”Such a reaction is understandable, especially since many of us have had teachers whoemphasized rote memory, rather than understanding, as the method of instruction.Actually, comparatively few equations need to be remembered (they have beenmarked with an asterisk), and most of these are simple enough to require little effortat conscious memorization. Being able to reproduce an equation is no guarantee ofbeing able to apply that equation to solving problems. To use an equation properly, onemust understand it. Understanding involves not only knowing what the symbols standfor but also knowing when the equation applies and when it does not apply. Everyoneknows the ideal-gas equation PV 5 nRT, but it’s amazing how often students will usethis equation in problems involving liquids or solids. Another part of understanding anequation is knowing where the equation comes from. Is it simply a definition? Or is ita law that represents a generalization of experimental observations? Or is it a roughempirical rule with only approximate validity? Or is it a deduction from the laws ofthermodynamics made without approximations? Or is it a deduction from the laws ofthermodynamics made using approximations and therefore of limited validity?As well as understanding the important equations, you should also know themeanings of the various defined terms (closed system, ideal gas, etc.). Boldface type(for example, isotherm) is used to mark very important terms when they are firstdefined. Terms of lesser importance are printed in italic type (for example, isobar). Ifyou come across a term whose meaning you have forgotten, consult the index; thepage number where a term is defined is printed in boldface type.x 5 102184.585
5 1020.585102184

5 0.260 3 102184
5 2.60 3 102185log10 12.75 3 102150 2 5 log10 2.75 1 log10 102150

5 0.439 2 150 5 2149.561ln x 5 1log10 x 2 > 1log10 e 2 5 log10 x ln 10 5 2.3026 log10 xln x k
5 k ln xln xy 5 ln x 1 ln y,  ln 1x>y 2 5 ln x 2 ln yeln x

5 x  and  10log x
5 xIf 10t

5 x, then log x 5 t.  If es
5 x, then ln x 5 s.ln x ; loge x,  log x ; log10 x



Working problems is essential to learning physical chemistry. Suggestions for
solving problems are given in Sec. 2.12. It’s a good idea to test your understanding of
a section by working on some relevant problems as soon as you finish each section.
Do not wait until you feel you have mastered a section before working some problems.
The problems in this book are classified by section.

Keep up to date in assignments. Cramming does not work in physical chemistry
because of the many concepts to learn and the large amount of practice in working
problems that is needed to master these concepts. Most students find that physical
chemistry requires a lot more study and problem-solving time than the typical college
course, so be sure you allot enough time to this course.

Make studying an active process. Read with a pencil at hand and use it to verify
equations, to underline key ideas, to make notes in the margin, and to write down
questions you want to ask your instructor. Sort out the basic principles from what is
simply illustrative detail and digression. In this book, small print is used for historical
material, for more advanced material, and for minor points.

After reading a section, make a written summary of the important points. This is
a far more effective way of learning than to keep rereading the material. You might
think it a waste of time to make summaries, since chapter summaries are provided.
However, preparing your own summary will make the material much more meaning-
ful to you than if you simply read the one at the end of the chapter.

A psychologist carried out a project on improving student study habits that raised
student grades dramatically. A key technique used was to have students close the text-
book at the end of each section and spend a few minutes outlining the material; the
outline was then checked against the section in the book. [L. Fox in R. Ulrich et al.
(eds.), Control of Human Behavior, Scott, Foresman, 1966, pp. 85–90.]

Before reading a chapter in detail, browse through it first, reading only the section
headings, the first paragraph of each section, the summary, and some of the problems
at the end of the chapter. This gives an idea of the structure of the chapter and makes
the reading of each section more meaningful. Reading the problems first lets you
know what you are expected to learn from the chapter.

You might try studying occasionally with another person. Discussing problems
with someone else can help clarify the material in your mind.

Set aside enough time to devote to this course. Physical chemistry is a demanding
subject and requires a substantial investment of time to learn. A study of violin
students found that those judged the best had accumulated at age 18 an average of
7400 hours of lifetime practice, as compared with 5300 hours for those violinists
judged only as good, and 3400 hours of practice for violinists at a still-lower playing
ability [K. A. Ericsson et al., Psychologic. Rev., 100, 363 (1993)]. Studies of experts
in chess, sports, and medicine have found similar strong correlations between the level
of expertise and the amount of practice. Ericsson stated that “The extensive evidence
for modifiability by extended practice led my colleagues and me to question whether
there is any firm evidence that innate talent is a necessary prerequisite for developing
expert performance [see G. Schraw, Educ. Psychol. Rev., 17, 389 (2005)].

Additional support for the primary importance of effort are the following state-
ments (C. S. Dweck, Scientific American Mind, Dec. 2007, p. 36): “research is con-
verging on the conclusion that great accomplishment, and even what we call genius, is
typically the result of years of passion and dedication and not something that flows nat-
urally from a gift”; “hard work and discipline contribute much more to school achieve-
ment than IQ does”; “studies show that teaching people . . . to focus on effort rather
than intelligence or talent, helps make them into high achievers in school and in life.”

Ericsson emphasizes the importance of deliberate practice: “deliberate practice is
a highly structured activity, the explicit goal of which is to improve performance.
Specific tasks are invented to overcome weaknesses, and performance is carefully
monitored to provide cues for ways to improve it further.” [K. A. Ericsson et al.,

Section 1.9

Study Suggestions
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Chapter 1Thermodynamics32 Psychologic. Rev., 100, 363 (1993)]. It’s a good idea to analyze the kinds of mistakesyou are making in physical chemistry and deliberately aim to improve in areas you aredeficient in. If you are getting problems wrong because you are making mistakes incalculus or algebra, practice doing derivatives and integrals. If you get problemswrong because you are being inconsistent with units, get in the habit of always in-cluding the units of each quantity when you do problems, and take the time to makesure that units cancel so as to give the proper units for the answer; make sure you knowwhat the SI units are for each physical quantity encountered. If you are getting prob-lems wrong or are unable to do problems because you overlook or misinterpret ormisapply the conditions given in the problems, make sure you are familiar with theprecise definitions of such terms as isothermal and adiabatic, pay careful attentionwhen you read a problem to what the conditions are, and when you learn starred equa-tions, make sure you also learn the conditions of applicability for each equation.As to studying, research has shown that students who study in a quiet place do bet-ter than those who study in a place with many distractions.Get adequate sleep. The study of violinists mentioned previously found that theviolinists considered adequate sleep to be an important factor in improving perfor-mance, and the two best groups of violinists averaged 5 hours more of sleep perweek than the lowest level of violinists. College students are notoriously sleepdeprived. Numerous studies have shown the negative effects of sleep deprivationon mental and physical performance. (For the amusing and insightful account ofone college student, see A. R. Cohen, Harvard Magazine, Nov.–Dec. 2001, p. 83—www.harvardmagazine.com/on-line/110190.html.)Some suggestions to help you prepare for exams are1. Learn the meanings of all terms in boldface type.2. Memorize all starred equations and their conditions of applicability. (Do notmemorize unstarred equations.)3. Make sure you understand all starred equations.4. Review your class notes.5. Rework homework problems you had difficulty with.6. Work some unassigned problems for additional practice.7. Make summaries if you have not already done so.8. Check that you understand all the concepts mentioned in the end-of-chaptersummaries.9. Make sure you can do each type of calculation listed in the summaries.10. Prepare a practice exam by choosing some relevant homework problems and workthem in the time allotted for the exam.My students often ask me whether the fact that they have to learn only the starredequations means that problems that require the use of unstarred equations will not ap-pear on exams. My answer is that if an unstarred equation is needed, it will be includedas given information on the exam.Since, as with all of us, your capabilities for learning and understanding arefinite and the time available to you is limited, it is best to accept the fact that therewill probably be some material you may never fully understand. No one understandseverything fully.
1.10 SUMMARYThe four branches of physical chemistry are thermodynamics, quantum chemistry, sta-tistical mechanics, and kinetics.Thermodynamics deals with the relationships between the macroscopic equilib-rium properties of a system. Some important concepts in thermodynamics are system(open versus closed; isolated versus nonisolated; homogeneous versus heterogeneous);



surroundings; walls (rigid versus nonrigid; permeable versus impermeable; adiabaticversus thermally conducting); equilibrium (mechanical, material, thermal); state func-tions (extensive versus intensive); phase; and equation of state.Temperature was defined as an intensive state function that has the same value fortwo systems in thermal equilibrium and a different value for two systems not in ther-mal equilibrium. The setting up of a temperature scale is arbitrary, but we chose to usethe ideal-gas absolute scale defined by Eq. (1.15).An ideal gas is one that obeys the equation of state PV 5 nRT. Real gases obeythis equation only in the limit of zero density. At ordinary temperatures and pressures,the ideal-gas approximation will usually be adequate for our purposes. For an ideal gasmixture, PV 5 ntotRT. The partial pressure of gas i in any mixture is Pi ; xiP, wherethe mole fraction of i is xi ; ni /ntot.Differential and integral calculus were reviewed, and some useful partial-derivativerelations were given [Eqs. (1.30), (1.32), (1.34), and (1.36)].The thermodynamic properties a (thermal expansivity) and k (isothermal com-pressibility) are defined by a ; (1/V) (­V/­T)P and k ; 2(1/V ) (­V/­P)T for a sys-tem of fixed composition.Understanding, rather than mindless memorization, is the key to learning physi-cal chemistry.Important kinds of calculations dealt with in this chapter include• Calculation of P (or V or T) of an ideal gas or ideal gas mixture using PV 5 nRT.• Calculation of the molar mass of an ideal gas using PV 5 nRT and n 5 m/M.• Calculation of the density of an ideal gas.• Calculations involving partial pressures.• Use of a or k to find volume changes produced by changes in T or P.• Differentiation and partial differentiation of functions.• Indefinite and definite integration of functions.
FURTHER READING AND DATA SOURCESTemperature: Quinn; Shoemaker, Garland, and Nibler, chap. XVIII; McGlashan,chap. 3; Zemansky and Dittman, chap. 1. Pressure measurement: Rossiter, Hamilton,and Baetzold, vol. VI, chap. 2. Calculus: C. E. Swartz, Used Math for the First TwoYears of College Science, Prentice-Hall, 1973.
r, a, and k values: Landolt-Börnstein, 6th ed., vol. II, part 1, pp. 378–731. Problems
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Section 1.2
1.1 True or false? (a) A closed system cannot interact with itssurroundings. (b) Density is an intensive property. (c) TheAtlantic Ocean is an open system. (d) A homogeneous systemmust be a pure substance. (e) A system containing only onesubstance must be homogeneous.
1.2 State whether each of the following systems is closed oropen and whether it is isolated or nonisolated: (a) a system en-closed in rigid, impermeable, thermally conducting walls; (b) ahuman being; (c) the planet earth.
1.3 How many phases are there in a system that consists of (a) CaCO3(s), CaO(s), and CO2(g); (b) three pieces of solidAgBr, one piece of solid AgCl, and a saturated aqueous solu-tion of these salts. 1.4 Explain why the definition of an adiabatic wall in Sec. 1.2specifies that the wall be rigid and impermeable.

1.5 The density of Au is 19.3 g/cm3 at room temperature and1 atm. (a) Express this density in kg/m3. (b) If gold is selling for$800 per troy ounce, what would a cubic meter of it sell for? Onetroy ounce 5 480 grains, 1 grain 5 pound, 1 pound 5 453.59 g.
Section 1.4
1.6 True or false? (a) One gram is Avogadro’s number oftimes as heavy as 1 amu. (b) The Avogadro constant NA has nounits. (c) Mole fractions are intensive properties. (d) One moleof water contains Avogadro’s number of water molecules.
1.7 For O2, give (a) the molecular weight; (b) the molecularmass; (c) the relative molecular mass; (d) the molar mass.17000PROBLEMS
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1.8 A solution of HCl in water is 12.0% HCl by mass. Findthe mole fractions of HCl and H2O in this solution.
1.9 Calculate the mass in grams of (a) one atom of carbon;(b) one molecule of water.
1.10 The room-temperature density of Po is 9.20 g/cm3 andits longest-lived isotope has mass number 209. The structure ofsolid Po can be described as follows. Imagine a layer of cubeslike Fig. 23.8 but with many more cubes; the edge length ofeach cube is taken as equal to the diameter of a Po atom; thenplace another cube directly over each cube in the first layer andaligned with that cube, thereby forming a second layer; thenadd cubes directly over the second-layer cubes to form a thirdlayer; and so on. If one Po atom is put into each cube withthe atomic nucleus at the center of the cube, we have the Postructure. (a) Find the volume of one mole of Po. (b) Findthe volume of the cube that surrounds one Po atom in the solid.(c) Find the diameter of a Po atom. (d ) For a spherical nanopar-ticle of Po whose diameter is 2 nm, find the number of Poatoms present. (e) Repeat (d) for a Po spherical nanoparticle ofdiameter 100 nm. ( f ) For a cubic nanoparticle of Po whose edgelength is 2 nm, calculate the percentage of Po atoms that are atthe surface of the particle. (g) Repeat ( f ) for a Po cubic particleof edge length 100 nm. (The increasing percentage of atoms atthe surface as the particle size decreases is one reason the prop-erties of nanomaterials change with size.)
Section 1.5
1.11 True or false? (a) On the Celsius scale, the boiling pointof water is slightly less than 100.00°C. (b) Doubling the ab-solute temperature of an ideal gas at fixed volume and amountof gas will double the pressure. (c) The ratio PV/mT is the samefor all gases in the limit of zero pressure. (d) The ratio PV/nT isthe same for all gases in the limit of zero pressure. (e) All idealgases have the same density at 25°C and 1 bar. ( f ) All idealgases have the same number of molecules per unit volume at25°C and 10 bar.
1.12 Do these conversions: (a) 5.5 m3 to cm3; (b) 1.0 GPa to bar(where 1 GPa ; 109 Pa); (c) 1.000 hPa to torr (where 1 hPa ;102 Pa); (d) 1.5 g/cm3 to kg/m3.
1.13 In Fig. 1.2, if the mercury levels in the left and rightarms of the manometer are 30.43 and 20.21 cm, respectively,above the bottom of the manometer, and if the barometric pres-sure is 754.6 torr, find the pressure in the system. Neglect tem-perature corrections to the manometer and barometer readings.
1.14 (a) A seventeenth-century physicist built a water barom-eter that projected through a hole in the roof of his house so thathis neighbors could predict the weather by the height of thewater. Suppose that at 25°C a mercury barometer reads 30.0 in.What would be the corresponding height of the column in awater barometer? The densities of mercury and water at 25°Care 13.53 and 0.997 g/cm3, respectively. (b) What pressure inatmospheres corresponds to a 30.0-in. mercury-barometer read-ing at 25°C at a location where g 5 978 cm/s2?
1.15 Derive Eq. (1.17) from Eq. (1.18). 1.16 (a) What is the pressure exerted by 24.0 g of carbondioxide in a 5.00-L vessel at 0°C? (b) A rough rule of thumb isthat 1 mole of gas occupies 1 ft3 at room temperature and pres-sure (25°C and 1 atm). Calculate the percent error in this rule.One inch 5 2.54 cm.

1.17 A sample of 65 mg of an ideal gas at 0.800 bar pressurehas its volume doubled and its absolute temperature tripled.Find the final pressure.
1.18 For a certain hydrocarbon gas, 20.0 mg exerts a pressureof 24.7 torr in a 500-cm3 vessel at 25°C. Find the molar massand the molecular weight and identify the gas.
1.19 Find the density of N2 at 20°C and 0.667 bar.
1.20 For 1.0000 mol of N2 gas at 0.00°C, the following vol-umes are observed as a function of pressure:P/atm 1.0000 3.0000 5.0000V/cm3 22405 7461.4 4473.1Calculate and plot PV/nT versus P for these three points and ex-trapolate to P 5 0 to evaluate R.
1.21 The measured density of a certain gaseous amine at 0°Cas a function of pressure isP/atm 0.2000 0.5000 0.8000
r/(g/L) 0.2796 0.7080 1.1476Plot P/r versus P and extrapolate to P 5 0 to find an accuratemolecular weight. Identify the gas.
1.22 After 1.60 mol of NH3 gas is placed in a 1600-cm3 boxat 25°C, the box is heated to 500 K. At this temperature, theammonia is partially decomposed to N2 and H2, and a pressuremeasurement gives 4.85 MPa. Find the number of moles ofeach component present at 500 K.
1.23 A student attempts to combine Boyle’s law and Charles’law as follows. “We have PV 5 K1 and V/T 5 K2. Equals mul-tiplied by equals are equal; multiplication of one equation bythe other gives PV2/T 5 K1K2. The product K1K2 of two con-stants is a constant, so PV2/T is a constant for a fixed amount ofideal gas.” What is the fallacy in this reasoning?
1.24 Prove that the equations PV/T 5 C1 for m constant andV/m 5 C2 for T and P constant lead to PV/mT 5 a constant.
1.25 A certain gas mixture is at 3450 kPa pressure and iscomposed of 20.0 g of O2 and 30.0 g of CO2. Find the CO2 par-tial pressure.
1.26 A 1.00-L bulb of methane at a pressure of 10.0 kPa isconnected to a 3.00-L bulb of hydrogen at 20.0 kPa; both bulbsare at the same temperature. (a) After the gases mix, what is thetotal pressure? (b) What is the mole fraction of each componentin the mixture?
1.27 A student decomposes KClO3 and collects 36.5 cm3 ofO2 over water at 23°C. The laboratory barometer reads 751 torr.The vapor pressure of water at 23°C is 21.1 torr. Find the vol-ume the dry oxygen would occupy at 0°C and 1.000 atm.
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1.28 Two evacuated bulbs of equal volume are connected by
a tube of negligible volume. One bulb is placed in a 200-K
constant-temperature bath and the other in a 300-K bath, and
then 1.00 mol of an ideal gas is injected into the system. Find
the final number of moles of gas in each bulb.
1.29 An oil-diffusion pump aided by a mechanical forepump
can readily produce a “vacuum” with pressure 1026 torr.
Various special vacuum pumps can reduce P to 10211 torr. At
25°C, calculate the number of molecules per cm3 in a gas at
(a) 1 atm; (b) 1026 torr; (c) 10211 torr.
1.30 A certain mixture of He and Ne in a 356-cm3 bulb
weighs 0.1480 g and is at 20.0°C and 748 torr. Find the mass
and mole fraction of He present.
1.31 The earth’s radius is 6.37 3 106 m. Find the mass of the
earth’s atmosphere. (Neglect the dependence of g on altitude.)
1.32 (a) If 105P/bar 5 9.4, what is P? (b) If 1022T/K 5 4.60,
what is T? (c) If P/(103 bar) 5 1.2, what is P? (d) If 103(K/T) 5

3.20, what is T?
1.33 A certain mixture of N2 and O2 has a density of 1.185 g/L
at 25°C and 101.3 kPa. Find the mole fraction of O2 in the mix-
ture. (Hint: The given data and the unknown are all intensive
properties, so the problem can be solved by considering any
convenient fixed amount of mixture.)
1.34 The mole fractions of the main components of dry air at
sea level are xN2 5 0.78, xO2 5 0.21, xAr 5 0.0093, xCO2 5

0.0004. (a) Find the partial pressure of each of these gases in
dry air at 1.00 atm and 20°C. (b) Find the mass of each of these
gases in a 15 ft 3 20 ft 3 10 ft room at 20°C if the barometer
reads 740 torr and the relative humidity is zero. Also, find the
density of the air in the room. Which has a greater mass, you or
the air in the room of this problem?

Section 1.6
1.35 On Fig. 1.15, mark all points where df/dx is zero and cir-
cle each portion of the curve where df/dx is negative.
1.36 Let y 5 x2 1 x 2 1. Find the slope of the y-versus-x
curve at x 5 1 by drawing the tangent line to the graph at x 5

1 and finding its slope. Compare your result with the exact
slope found by calculus.
1.37 Find d/dx of (a) 2x3e23x; (b) 4e23x2

1 12; (c) ln 2x;
(d ) 1/(1 2 x); (e) x/(x 1 1); ( f ) ln (1 2 e22x); (g) sin2 3x.
1.38 (a) Find dy/dx if xy 5 y 2 2. (b) Find d2(x2e3x)/dx2.
(c) Find dy if y 5 5x2 2 3x 1 2/x 2 1.
1.39 Use a calculator to find: (a) limx→0 xx for x . 0;
(b) limx→0 (1 1 x)1/x.
1.40 (a) Evaluate the first derivative of the function y 5 ex2 at
x 5 2 by using a calculator to evaluate Dy/Dx for Dx 5 0.1,
0.01, 0.001, etc. Note the loss of significant figures in Dy as Dx
decreases. If you have a programmable calculator, you might
try programming this problem. (b) Compare your result in
(a) with the exact answer.

1.41 Find ­/­y of: (a) 5x2 1 y 1 sin(axy) 1 3; (b) cos (by2z);
(c) xe x/y; (d ) tan (3x 1 1); (e) 1/(e2a/y 1 1); ( f ) f (x)g(y)h(z).
1.42 Take (­/­T)P,n of (a) nRT/P; (b) P/nRT 2 (where R is a
constant).
1.43 (a) If y 5 4x3 1 6x, find dy. (b) If z 5 3x2y3, find dz.
(c) If P 5 nRT/V, where R is a constant and all other quantities
are variables, find dP.
1.44 If c is a constant and all other letters are variables, find
(a) d(PV ); (b) d(1yT ); (c) d(cT 2); (d) d(U 1 PV ).
1.45 Let z 5 x5/y3. Evaluate the four second partial deriva-
tives of z; check that ­2z/(­x ­y) 5 ­2z/(­y ­x).
1.46 (a) For an ideal gas, use an equation like (1.30) to show
that dP 5 P(n21 dn 1 T21 dT 2 V21 dV) (which can be written
as d ln P 5 d ln n 1 d ln T 2 d ln V ). (b) Suppose 1.0000 mol
of ideal gas at 300.00 K in a 30.000-L vessel has its tempera-
ture increased by 1.00 K and its volume increased by 0.050 L.
Use the result of (a) to estimate the change in pressure, DP.
(c) Calculate DP exactly for the change in (b) and compare with
the estimate given by dP.

Section 1.7
1.47 Find the molar volume of an ideal gas at 20.0°C and
1.000 bar.
1.48 (a) Write the van der Waals equation (1.39) using the
molar volume instead of V and n. (b) If one uses bars, cubic
centimeters, moles, and kelvins as the units of P, V, n, and T,
give the units of a and of b in the van der Waals equation.
1.49 For a liquid obeying the equation of state (1.40), find
expressions for a and k.
1.50 For H2O at 50°C and 1 atm, r5 0.98804 g/cm3 and k5

4.4 3 10210 Pa21. (a) Find the molar volume of water at 50°C
and 1 atm. (b) Find the molar volume of water at 50°C and
100 atm. Neglect the pressure dependence of k.
1.51 For an ideal gas: (a) sketch some isobars on a Vm-T dia-
gram; (b) sketch some isochores on a P-T diagram.
1.52 A hypothetical gas obeys the equation of state PV 5

nRT(1 1 aP), where a is a constant. For this gas: (a) show that
a 5 1/T and k 5 1/P(1 1 aP); (b) verify that (­P/­T)V 5 a/k.
1.53 Use the following densities of water as a function of T
and P to estimate a, k, and for water at 25°C and
1 atm: 0.997044 g/cm3 at 25°C and 1 atm; 0.996783 g/cm3 at
26°C and 1 atm; 0.997092 g/cm3 at 25°C and 2 atm.
1.54 By drawing tangent lines and measuring their slopes, use
Fig. 1.14 to estimate for water: (a) a at 100°C and 500 bar;
(b) k at 300°C and 2000 bar.
1.55 For H2O at 17°C and 1 atm, a 5 1.7 3 1024 K21 and
k 5 4.7 3 1025 atm21. A closed, rigid container is completely
filled with liquid water at 14°C and 1 atm. If the temperature is
raised to 20°C, estimate the pressure in the container. Neglect
the pressure and temperature dependences of a and k.

10P>0T 2Vm
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1.56 Give a molecular explanation for each of the following
facts. (a) For solids and liquids, k usually decreases with in-
creasing pressure. (b) For solids and liquids, (­k/­T )P is usually
positive.
1.57 Estimate the pressure increase needed to decrease
isothermally by 1% the 1-atm volume of (a) a typical solid
with k 5 5 3 1026 atm21; (b) a typical liquid with k 5 1 3

1024 atm21.
Section 1.8
1.58 (a) Evaluate S4J50 (2J 1 1). (b) Write the expression 
x1V1 1 x2V2 1 ? ? ? 1 xsVs using summation notation. (c) Write
out the individual terms of the double sum S2i51 S6j54 bij.
1.59 Prove the sum identities in (1.50) and (1.51). (Hint:
Write out the individual terms of the sums.)
1.60 Evaluate: (a) e322 (2V 1 5V 2) dV; (b) e24 V21 dV;
(c) e1q V23 dV; (d) e0p/2 x2 cos x3 dx.
1.61 Find (a) e sin ax dx; (b) e0p sin ax dx;
(c) (d/da) e0p sin ax dx; (d) e (a/T 2) dT.
1.62 For H2O(l) at 50°C and 1 atm, a 5 4.576 3 1024 K21,
k 5 44.17 3 1026 bar21, and Vm 5 18.2334 cm3/mol. (a) Esti-
mate at 52°C and 1 atm and compare the result with the
experimental value 18.2504 cm3/mol. Neglect the temperature
dependence of a. (b) Estimate at 50°C and 200 bar and
compare with the experimental value 18.078 cm3/mol.
1.63 State whether each of the following is a number or is a
function of x: (a) (b) (c)
1.64 In which of the following is t a dummy variable? 
(a) (b) (c)
1.65 (a) If df (x)/dx 5 2x3 1 3e5x, find f (x). (b) If e f (x) dx 5

3x8 1 C, where C is a constant, find f (x).
1.66 (a) Use a programmable calculator or a computer to
obtain approximations to the integral e32 x2 dx by evaluating the

o100t51 t 5.e
3
0 et2 dt;ee t2 dt;

o203x51 e x2.e
2
1 e x 2 dx;ee x2 dx;

Vm,H2O

Vm,H2O

sum (1.58) for Dx 5 0.1, 0.01, and 0.001; take the xi values at
the left end of each subinterval. Compare your results with the
exact value. (b) Use (1.58) with Dx 5 0.01 to obtain an ap-
proximate value of 
1.67 (a) Find log10 (4.2 3 101750). (b) Find ln (6.0 3 102200).
(c) If log10 y 5 2138.265, find y. (d) If ln z 5 260.433, find z.
1.68 Find (a) log2 32; (b) log43 1.

General
1.69 Classify each property as intensive or extensive; (a) tem-
perature; (b) mass; (c) density; (d) electric field strength; (e) a;
( f ) mole fraction of a component.
1.70 For O2 gas in thermal equilibrium with boiling sulfur,
the following values of PVm versus P are found:

P/torr 1000 500 250 
PVm/(L atm mol21) 59.03 58.97 58.93

(Since P has units of pressure, P/torr is dimensionless.) From a
plot of these data, find the boiling point of sulfur.
1.71 True or false? (a) Every isolated system is closed.
(b) Every closed system is isolated. (c) For a fixed amount of
an ideal gas, the product PV remains constant during any
process. (d) The pressure of a nonideal gas mixture is equal
to the sum of the partial pressures defined by Pi ; xiP.(e) dy/dx is equal to Dy/Dx for all functions y. ( f ) dy/dx is
equal to Dy/Dx only for functions that vary linearly with x
according to y 5 mx 1 b. (g) ln (b/a) 5 2ln (a/b). (h) If ln x
is negative, then x lies between 0 and 1. (i) Ideal-gas
isotherms farther away from the axes of a P-versus-V plot
correspond to higher temperatures. ( j) The partial derivative
(­P/­T)V is an infinitesimally small quantity. (k) If G is a
function of T and P, then dG 5 (­G/­T)P 1 (­G/­P)T.

e
10 e2x2 dx .
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The First Law of
ThermodynamicsChapter 1 introduced some of the vocabulary of thermodynamics and defined the im-portant state function temperature. Another key state function in thermodynamics isthe internal energy U, whose existence is postulated by the first law of thermodynam-ics; this law is the main topic of Chapter 2. The first law states that the total energy ofsystem plus surroundings remains constant (is conserved). Closely related to the in-ternal energy is the state function enthalpy H, defined in Sec. 2.5. Other importantstate functions introduced in this chapter are the heat capacities at constant volume andat constant pressure, CV and CP (Sec. 2.6), which give the rates of change of the inter-nal energy and enthalpy with temperature [Eq. (2.53)]. As a preliminary to the mainwork of this chapter, Sec. 2.1 reviews classical mechanics.The internal energy of a thermodynamic system is the sum of the molecular ener-gies, as will be discussed in detail in Sec. 2.11. Energy is a key concept in all areas ofphysical chemistry. In quantum chemistry, a key step to calculating molecular proper-ties is solving the Schrödinger equation, which is an equation that gives the allowedenergy levels of a molecule. In statistical mechanics, the key to evaluating thermody-namic properties from molecular properties is to find something called the partitionfunction, which is a certain sum over energy levels of the system. The rate of a chem-ical reaction depends strongly on the activation energy of the reaction. More generally,the kinetics of a reaction is determined by something called the potential-energysurface of the reaction.The importance of energy in the economy is obvious. World consumption ofenergy increased from 3.0 3 1020 J in 1980 to 4.9 3 1020 J in 2005, with fossil fuels(oil, coal, natural gas) supplying 86% of the 2005 total.Energy transformations play a key role in the functioning of biological organisms.
2.1 CLASSICAL MECHANICSTwo important concepts in thermodynamics are work and energy. Since these con-cepts originated in classical mechanics, we review this subject before continuing withthermodynamics.

Classical mechanics (first formulated by the alchemist, theologian, physicist, andmathematician Isaac Newton) deals with the laws of motion of macroscopic bodieswhose speeds are small compared with the speed of light c. For objects with speedsnot small compared with c, one must use Einstein’s relativistic mechanics. Since thethermodynamic systems we consider will not be moving at high speeds, we need notworry about relativistic effects. For nonmacroscopic objects (for example, electrons),one must use quantum mechanics. Thermodynamic systems are of macroscopic size,so we shall not need quantum mechanics at this point. C H A P T E R
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Chapter 2The First Law of Thermodynamics38

Newton’s Second LawThe fundamental equation of classical mechanics is Newton’s second law of motion:

(2.1)*where m is the mass of a body, F is the vector sum of all forces acting on it at someinstant of time, and a is the acceleration the body undergoes at that instant. F and aare vectors, as indicated by the boldface type. Vectors have both magnitude and di-rection. Scalars (for example, m) have only a magnitude. To define acceleration, weset up a coordinate system with three mutually perpendicular axes x, y, and z. Let r bethe vector from the coordinate origin to the particle (Fig. 2.1). The particle’s velocity vis the instantaneous rate of change of its position vector r with respect to time:
(2.2)*The magnitude (length) of the vector v is the particle’s speed v. The particle’s accel-

eration a is the instantaneous rate of change of its velocity:
(2.3)*A vector in three-dimensional space has three components, one along each of thecoordinate axes. Equality of vectors means equality of their corresponding compo-nents, so a vector equation is equivalent to three scalar equations. Thus Newton’s sec-ond law F 5 ma is equivalent to the three equations (2.4)where Fx and ax are the x components of the force and the acceleration. The x compo-nent of the position vector r is simply x, the value of the particle’s x coordinate.Therefore (2.3) gives ax 5 d2x/dt2, and (2.4) becomes (2.5)The weight W of a body is the gravitational force exerted on it by the earth. If g isthe acceleration due to gravity, Newton’s second law gives (2.6)

UnitsIn 1960 the General Conference on Weights and Measures recommended a single sys-tem of units for use in science. This system is called the International System of
Units (Système International d’Unités), abbreviated SI. In mechanics, the SI uses me-ters (m) for length, kilograms (kg) for mass, and seconds (s) for time. A force that pro-duces an acceleration of one meter per second2 when applied to a one-kilogram massis defined as one newton (N): 1 N ; 1 kg m/s2 (2.7)If one were to adhere to SI units, pressures would always be given innewtons/meter2 (pascals). However, it seems clear that many scientists will continueto use such units as atmospheres and torrs for many years to come. The current scien-tific literature increasingly uses SI units, but since many non-SI units continue to beused, it is helpful to be familiar with both SI units and commonly used non-SI units.SI units for some quantities introduced previously are cubic meters (m3) for volume,kg/m3 for density, pascals for pressure, kelvins for temperature, moles for amount ofsubstance, and kg/mol for molar mass.W 5 mgFx 5 m d2xdt2 ,  Fy 5 m d2ydt2 ,  Fz 5 m d2zdt2Fx 5 max,  Fy 5 may,  Fz 5 maza ; dv>dt 5 d2r>dt2v ; dr>dtF 5 ma

Figure 2.1The displacement vector r fromthe origin to a particle.



WorkSuppose a force F acts on a body while the body undergoes an infinitesimal displace-ment dx in the x direction. The infinitesimal amount of work dw done on the body bythe force F is defined as
(2.8)*where Fx is the component of the force in the direction of the displacement. If theinfinitesimal displacement has components in all three directions, then (2.9)Consider now a noninfinitesimal displacement. For simplicity, let the particle bemoving in one dimension. The particle is acted on by a force F(x) whose magnitudedepends on the particle’s position. Since we are using one dimension, F has only onecomponent and need not be considered a vector. The work w done by F duringdisplacement of the particle from x1 to x2 is the sum of the infinitesimal amounts ofwork (2.8) done during the displacement: w 5 S F(x) dx. But this sum of infinitesi-mal quantities is the definition of the definite integral [Eq. (1.59)], so (2.10)In the special case that F is constant during the displacement, (2.10) becomes (2.11)From (2.8), the units of work are those of force times length. The SI unit of workis the joule (J): (2.12)Power P is defined as the rate at which work is done. If an agent does work dw intime dt, then P ; dw/dt. The SI unit of power is the watt (W): 1 W ; 1 J/s.

Mechanical EnergyWe now prove the work–energy theorem. Let F be the total force acting on a particle,and let the particle move from point 1 to point 2. Integration of (2.9) gives as the totalwork done on the particle: (2.13)Newton’s second law gives Fx 5 max 5 m(dvx /dt). Also, dvx /dt 5 (dvx /dx) (dx/dt) 5(dvx /dx)vx. Therefore Fx 5 mvx(dvx /dx), with similar equations for Fy and Fz. We haveFx dx 5 mvx dvx, and (2.13) becomes (2.14)We now define the kinetic energy K of the particle as
(2.15)*The right side of (2.14) is the final kinetic energy K2 minus the initial kinetic energy K1:(2.16)w 5 K2 2 K1 5 ¢K  one-particle syst.K ; 12 mv

2 5
12 m1vx2 1 v

2y 1 v
2z 2w 5

12 m1v2x2 1 v
2y2 1 v

2z2 2 2
12 m1v2x1 1 v

2y1 1 v
2z1 2w 5 #

21  

mvx dvx 1 #
21  

mvy dvy 1 #
21  

mvz dvzw 5 #
21  

Fx dx 1 #
21  

Fy dy 1 #
21  

Fz dz1 J ; 1 N m 5 1 kg m2>s2w 5 F1x2 2 x1 2     for F constantw 5 #
x2x1 F1x 2 dxdw ; Fx dx 1 Fy dy 1 Fz dzdw ; Fx dx Section 2.1Classical Mechanics39



Chapter 2The First Law of Thermodynamics40 where DK is the change in kinetic energy. The work–energy theorem (2.16) states thatthe work done on the particle by the force acting on it equals the change in kineticenergy of the particle. It is valid because we defined kinetic energy in such a manneras to make it valid.Besides kinetic energy, there is another kind of energy in classical mechanics.Suppose we throw a body up into the air. As it rises, its kinetic energy decreases,reaching zero at the high point. What happens to the kinetic energy the body loses asit rises? It proves convenient to introduce the notion of a field (in this case, a gravita-tional field) and to say that the decrease in kinetic energy of the body is accompaniedby a corresponding increase in the potential energy of the field. Likewise, as the bodyfalls back to earth, it gains kinetic energy and the gravitational field loses a cor-responding amount of potential energy. Usually, we don’t refer explicitly to the fieldbut simply ascribe a certain amount of potential energy to the body itself, the amountdepending on the location of the body in the field.To put the concept of potential energy on a quantitative basis, we proceed as fol-lows. Let the forces acting on the particle depend only on the particle’s position andnot on its velocity, or the time, or any other variable. Such a force F with Fx 5Fx(x, y, z), Fy 5 Fy(x, y, z), Fz 5 Fz(x, y, z) is called a conservative force, for a reasonto be seen shortly. Examples of conservative forces are gravitational forces, electricalforces, and the Hooke’s law force of a spring. Some nonconservative forces are airresistance, friction, and the force you exert when you kick a football. For a conserva-tive force, we define the potential energy V(x, y, z) as a function of x, y, and z whosepartial derivatives satisfy (2.17)Since only the partial derivatives of V are defined, V itself has an arbitrary additiveconstant. We can set the zero level of potential energy anywhere we please.From (2.13) and (2.17), it follows that (2.18)Since dV 5 (­V/­x) dx 1 (­V/­y) dy 1 (­V/­z) dz [Eq. (1.30)], we have (2.19)But Eq. (2.16) gives w 5 K2 2 K1. Hence K2 2 K1 5 V1 2 V2, or (2.20)When only conservative forces act, the sum of the particle’s kinetic energy and poten-tial energy remains constant during the motion. This is the law of conservation ofmechanical energy. Using Emech for the total mechanical energy, we have (2.21)If only conservative forces act, Emech remains constant.What is the potential energy of an object in the earth’s gravitational field? Let thex axis point outward from the earth with the origin at the earth’s surface. We have Fx 5 2mg, Fy 5 Fz 5 0. Equation (2.17) gives ­V/­x 5 mg, ­V/­y 5 0 5 ­V/­z.Integration gives V 5 mgx 1 C, where C is a constant. (In doing the integration, weassumed the object’s distance above the earth’s surface was small enough for g to beconsidered constant.) Choosing the arbitrary constant as zero, we get (2.22)V 5 mghEmech 5 K 1 VK1 1 V1 5 K2 1 V2w 5 2#
21 dV 5 21V2 2 V1 2 5 V1 2 V2w 5 2#

21 0V0x dx 2 #
21  

0V
0y  dy 2 #

21  

0V
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where h is the object’s altitude above the earth’s surface. As an object falls to earth, itspotential energy mgh decreases and its kinetic energy mv
2 increases. Provided theeffect of air friction is negligible, the total mechanical energy remains constantas the object falls.We have considered a one-particle system. Similar results hold for a many-particlesystem. (See H. Goldstein, Classical Mechanics, 2d ed., Addison-Wesley, 1980,sec. 1-2, for derivations.) The kinetic energy of an n-particle system is the sum of thekinetic energies of the individual particles: (2.23)Let the particles exert conservative forces on one another. The potential energy V ofthe system is not the sum of the potential energies of the individual particles. Instead,V is a property of the system as a whole. V turns out to be the sum of contributions dueto pairwise interactions between particles. Let Vij be the contribution to V due to theforces acting between particles i and j. One finds (2.24)The double sum indicates that we sum over all pairs of i and j values except those with iequal to or greater than j. Terms with i 5 j are omitted because a particle does not exerta force on itself. Also, only one of the terms V12 and V21 is included, to avoid countingthe interaction between particles 1 and 2 twice. For example, in a system of three parti-cles, V 5 V12 1 V13 1 V23. If external forces act on the particles of the system, their con-tributions to V must also be included. [Vij is defined by equations similar to (2.17).]One finds that K 1 V 5 Emech is constant for a many-particle system with onlyconservative forces acting.The mechanical energy K 1 V is a measure of the work the system can do. Whena particle’s kinetic energy decreases, the work–energy theorem w 5 DK [Eq. (2.16)]says that w, the work done on it, is negative; that is, the particle does work on the sur-roundings equal to its loss of kinetic energy. Since potential energy is convertible tokinetic energy, potential energy can also be converted ultimately to work done on thesurroundings. Kinetic energy is due to motion. Potential energy is due to the positionsof the particles.

EXAMPLE 2.1 WorkA woman slowly lifts a 30.0-kg object to a height of 2.00 m above its initialposition. Find the work done on the object by the woman, and the work done bythe earth.The force exerted by the woman equals the weight of the object, which fromEq. (2.6) is F 5 mg 5 (30.0 kg) (9.81 m/s2) 5 294 N. From (2.10) and (2.11),the work she does on the object isThe earth exerts an equal and opposite force on the object compared with thelifter, so the earth does 2588 J of work on the object. This work is negativew 5 #
x2x1 F1x 2 dx 5 F¢x 5 1294 N 2 12.00 m 2 5 588 JV 5 ai aj 7 i VijK 5 K1 1 K2 1 # # # 1 Kn 5

12ani51 miv2iK 1 V12 Section 2.1Classical Mechanics41



Chapter 2The First Law of Thermodynamics42 because the force and the displacement are in opposite directions. The total workdone on the object by all forces is zero. The work–energy theorem (2.16) givesw 5 DK 5 0, in agreement with the fact that the object started at rest and endedat rest. (We derived the work–energy theorem for a single particle, but it alsoapplies to a perfectly rigid body.)
ExerciseA sphere of mass m is attached to a spring, which exerts a force F 5 2kx onthe sphere, where k (called the force constant) is a constant characteristic of thespring and x is the displacement of the sphere from its equilibrium position (theposition where the spring exerts no force on the sphere). The sphere is initially atrest at its equilibrium position. Find the expression for the work w done by some-one who slowly displaces the sphere to a final distance d from its equilibriumposition. Calculate w if k 5 10 N/m and d 5 6.0 cm. (Answer: kd 2, 0.018 J.)

2.2 P-V WORKWork in thermodynamics is defined as in classical mechanics. When part of the sur-roundings exerts a macroscopically measurable force F on matter in the system whilethis matter moves a distance dx at the point of application of F, then the surroundingshas done work dw 5 Fx dx [Eq. (2.8)] on the system, where Fx is the component of Fin the direction of the displacement. F may be a mechanical, electrical, or magneticforce and may act on and displace the entire system or only a part of the system. WhenFx and the displacement dx are in the same direction, positive work is done on thesystem: dw . 0. When Fx and dx are in opposite directions, dw is negative.
Reversible P-V WorkThe most common way work is done on a thermodynamic system is by a change inthe system’s volume. Consider the system of Fig. 2.2. The system consists of the mat-ter contained within the piston and cylinder walls and has pressure P. Let the externalpressure on the frictionless piston also be P. Equal opposing forces act on the piston,and it is in mechanical equilibrium. Let x denote the piston’s location. If the externalpressure on the piston is now increased by an infinitesimal amount, this increase willproduce an infinitesimal imbalance in forces on the piston. The piston will moveinward by an infinitesimal distance dx, thereby decreasing the system’s volume andincreasing its pressure until the system pressure again balances the external pressure.During this infinitesimal process, which occurs at an infinitesimal rate, the system willbe infinitesimally close to equilibrium.The piston, which is part of the surroundings, exerted a force, which we denote byFx, on matter in the system at the system–piston boundary while this matter moved adistance dx. The surroundings therefore did work dw 5 Fx dx on the system. Let F bethe magnitude of the force exerted by the system on the piston. Newton’s third law(action 5 reaction) gives F 5 Fx. The definition P 5 F/A of the system’s pressure Pgives Fx 5 F 5 PA, where A is the piston’s cross-sectional area. Therefore the workdw 5 Fx dx done on the system in Fig. 2.2 is (2.25)The system has cross-sectional area A and length l 5 b 2 x (Fig. 2.2), where x is thepiston’s position and b is the position of the fixed end of the system. The volume ofdw 5 PA dx 12bx Systeml

Figure 2.2A system confined by a piston.



this cylindrical system is V 5 Al 5 Ab 2 Ax. The change in system volume when thepiston moves by dx is dV 5 d(Ab 2 Ax) 5 2A dx. Equation (2.25) becomes
(2.26)*The subscript rev stands for reversible. The meaning of “reversible” will be discussedshortly. We implicitly assumed a closed system in deriving (2.26). When matter is trans-ported between system and surroundings, the meaning of work becomes ambiguous; weshall not consider this case. We derived (2.26) for a particular shape of system, but it canbe shown to be valid for every system shape (see Kirkwood and Oppenheim, sec. 3-1).We derived (2.26) by considering a contraction of the system’s volume (dV , 0).For an expansion (dV . 0), the piston moves outward (in the negative x direction), andthe displacement dx of the matter at the system–piston boundary is negative (dx , 0).Since Fx is positive (the force exerted by the piston on the system is in the positive xdirection), the work dw 5 Fx dx done on the system by the surroundings is negativewhen the system expands. For an expansion, the system’s volume change is still givenby dV 5 2A dx (where dx , 0 and dV . 0), and (2.26) still holds.In a contraction, the work done on the system is positive (dw . 0). In an expan-sion, the work done on the system is negative (dw , 0). (In an expansion, the workdone on the surroundings is positive.)So far we have considered only an infinitesimal volume change. Suppose we carryout an infinite number of successive infinitesimal changes in the external pressure. Ateach such change, the system’s volume changes by dV and work 2P dV is done on thesystem, where P is the current value of the system’s pressure. The total work w doneon the system is the sum of the infinitesimal amounts of work, and this sum of infin-itesimal quantities is the following definite integral: (2.27)where 1 and 2 are the initial and final states of the system, respectively.The finite volume change to which (2.27) applies consists of an infinite numberof infinitesimal steps and takes an infinite amount of time to carry out. In this process,the difference between the pressures on the two sides of the piston is always infinites-imally small, so finite unbalanced forces never act and the system remains infini-tesimally close to equilibrium throughout the process. Moreover, the process can bereversed at any stage by an infinitesimal change in conditions, namely, by infinitesi-mally changing the external pressure. Reversal of the process will restore both systemand surroundings to their initial conditions.A reversible process is one where the system is always infinitesimally close toequilibrium, and an infinitesimal change in conditions can reverse the process torestore both system and surroundings to their initial states. A reversible process isobviously an idealization.Equations (2.26) and (2.27) apply only to reversible expansions and contractions.More precisely, they apply to mechanically reversible volume changes. There could bea chemically irreversible process, such as a chemical reaction, occurring in the systemduring the expansion, but so long as the mechanical forces are only infinitesimallyunbalanced, (2.26) and (2.27) apply.The work (2.27) done in a volume change is called P-V work. Later on, we shalldeal with electrical work and work of changing the system’s surface area, but for now,only systems with P-V work will be considered.We have defined the symbol w to stand for work done on the system by the sur-roundings. Some texts use w to mean work done by the system on its surroundings.Their w is the negative of ours.wrev 5 2#

21  
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Chapter 2The First Law of Thermodynamics44

Line IntegralsThe integral e21 P dV in (2.27) is not an ordinary integral. For a closed system offixed composition, the system’s pressure P is a function of its temperature and volume:P 5 P(T, V ). To calculate wrev, we must evaluate the negative of (2.28)The integrand P(T, V ) is a function of two independent variables T and V. In an ordinarydefinite integral, the integrand is a function of one variable, and the value of the ordinarydefinite integral eba f (x) dx is determined once the function f and the limits a and b arespecified. For example, e31 x2 dx 5 33/3 2 13/3 5 26/3. In contrast, in e21 P(T, V ) dV,both of the independent variables T and V may change during the volume-changeprocess, and the value of the integral depends on how T and V vary. For example, if thesystem is an ideal gas, then P 5 nRT/V and e21 P(T, V ) dV 5 nR e21 (T/V ) dV. Before wecan evaluate e21 (T/V ) dV, we must know how both T and V change during the process.The integral (2.28) is called a line integral. Sometimes the letter L is put underthe integral sign of a line integral. The value of the line integral (2.28) is defined asthe sum of the infinitesimal quantities P(T, V ) dV for the particular process used to gofrom state 1 to state 2. This sum equals the area under the curve that plots P versus V.Figure 2.3 shows three of the many possible ways in which we might carry out areversible volume change starting at the same initial state (state 1 with pressure P1 andvolume V1) and ending at the same final state (state 2).In process (a), we first hold the volume constant at V1 and reduce the pressurefrom P1 to P2 by cooling the gas. We then hold the pressure constant at P2 and heat thegas to expand it from V1 to V2. In process (b), we first hold P constant at P1 and heatthe gas until its volume reaches V2. Then we hold V constant at V2 and cool the gasuntil its pressure drops to P2. In process (c), the independent variables V and T vary inan irregular way, as does the dependent variable P.For each process, the integral e21 P dV equals the shaded area under the P-versus-V curve. These areas clearly differ, and the integral e21 P dV has different values forprocesses (a), (b), and (c). The reversible work wrev 5 2e21 P dV thus has different val-ues for each of the processes (a), (b), and (c). We say that wrev (which equals minusthe shaded area under the P-versus-V curve) depends on the path used to go from state1 to 2, meaning that it depends on the specific process used. There are an infinite num-ber of ways of going from state 1 to state 2, and wrev can have any positive or negativevalue for a given change of state.The plots of Fig. 2.3 imply pressure equilibrium within the system during theprocess. In an irreversible expansion (see after Example 2.2), the system may have nosingle well-defined pressure, and we cannot plot such a process on a P-V diagram.
EXAMPLE 2.2 P-V workFind the work wrev for processes (a) and (b) of Fig. 2.3 if P1 5 3.00 atm, V1 5500 cm3, P2 5 1.00 atm, and V2 5 2000 cm3. Also, find wrev for the reverse ofprocess (a).We have wrev 5 2e21 P dV. The line integral e21 P dV equals the area underthe P-versus-V curve. In Fig. 2.3a, this area is rectangular and equals Hence wrev 5 21500 cm3 atm. The units cm3 atm are not customarily used forwork, so we shall convert to joules by multiplying and dividing by the values of the1V2 2 V1 2P2 5 12000 cm3 2 500 cm3 2 11.00 atm 2 5 1500 cm3 atm#
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Figure 2.3The work w done on the system ina reversible process (the heavylines) equals minus the shadedarea under the P-versus-V curve.The work depends on the processused to go from state 1 to state 2.



gas constant R 5 8.314 J/(mol K) and R 5 82.06 cm3 atm/(mol K) [Eqs. (1.19)and (1.20)]:An alternative procedure is to note that no work is done during the constant-volume part of process (a); all the work is done during the second step of theprocess, in which P is held constant at P2. ThereforeSimilarly, we find for process (b) that w 5 24500 cm3 atm 5 2456 J (seethe exercise in this example).Processes (a) and (b) are expansions. Hence the system does positive workon its surroundings, and the work w done on the system is negative in theseprocesses.For the reverse of process (a), all the work is done during the first step, duringwhich P is constant at 1.00 atm and V starts at 2000 cm3 and ends at 500 cm3. Hence(1.00 atm) dV 5 2(1.00 atm)(500 cm3 2 2000 cm3) 5 152 J.
ExerciseFind wrev for process (b) of Fig. 2.3 using the P1, V1, P2, V2 values given forprocess (a). (Answer: 24500 cm3 atm 5 2456 J.)

Irreversible P-V WorkThe work w in a mechanically irreversible volume change sometimes cannot be cal-culated with thermodynamics.For example, suppose the external pressure on the piston in Fig. 2.2 is suddenly reducedby a finite amount and is held fixed thereafter. The inner pressure on the piston is thengreater than the outer pressure by a finite amount, and the piston is accelerated outward.This initial acceleration of the piston away from the system will destroy the uniform pres-sure in the enclosed gas. The system’s pressure will be lower near the piston than fartheraway from it. Moreover, the piston’s acceleration produces turbulence in the gas. Thus wecannot give a thermodynamic description of the state of the system.We have dw 5 Fx dx. For P-V work, Fx is the force at the system–surroundings bound-ary, which is where the displacement dx is occurring. This boundary is the inner face ofthe piston, so dwirrev 5 2Psurf dV, where Psurf is the pressure the system exerts on the innerface of the piston. (By Newton’s third law, Psurf is also the pressure the piston’s inner faceexerts on the system.) Because we cannot use thermodynamics to calculate Psurf during theturbulent, irreversible expansion, we cannot find dwirrev from thermodynamics. The law of conservation of energy can be used to show that, for a frictionless piston(Prob. 2.22), (2.29)where Pext is the external pressure on the outer face of the piston and dKpist is the infinitesimalchange in piston kinetic energy. The integrated form of (2.29) is wirrev 5 2e21 Pext dV 2 DKpist.dwirrev 5 2Pext 
dV 2 dKpistw 5 2e500 cm32000 cm35 2P21V2 2 V1 2 5 211.00 atm 2 11500 cm3 2 5 2152 J wrev 5 2#

21  

P dV 5 2#
V2V1  

P2 dV 5 2P2#V2V1  dV 5 2P2V ` V2V1wrev 5 21500 cm3 atm 

8.314 J mol21 K2182.06 cm3 atm mol21 K21 5 2152 J Section 2.2P-V Work45



Chapter 2The First Law of Thermodynamics46 If we wait long enough, the piston’s kinetic energy will be dissipated by the internal friction(viscosity—see Sec. 15.3) in the gas. The gas will be heated, and the piston will eventuallycome to rest (perhaps after undergoing oscillations). Once the piston has come to rest, wehave DKpist 5 0 2 0 5 0, since the piston started and ended at rest. We then have wirrev 5

2e21 Pext dV. Hence we can find wirrev after the piston has come to rest. If, however, part of thepiston’s kinetic energy is transferred to some other body in the surroundings before the pistoncomes to rest, then thermodynamics cannot calculate the work exchanged between system andsurroundings. For further discussion, see D. Kivelson and I. Oppenheim, J. Chem. Educ., 43,233 (1966); G. L. Bertrand, ibid., 82, 874 (2005); E. A. Gislason and N. C. Craig, ibid., 84,499 (2007).
SummaryFor now, we shall deal only with work done due to a volume change. The work doneon a closed system in an infinitesimal mechanically reversible process is dwrev 5

2P dV. The work wrev 5 2e21 P dV depends on the path (the process) used to go fromthe initial state 1 to the final state 2.
2.3 HEATWhen two bodies at unequal temperatures are placed in contact, they eventually reachthermal equilibrium at a common intermediate temperature. We say that heat hasflowed from the hotter body to the colder one. Let bodies 1 and 2 have masses m1 andm2 and initial temperatures T1 and T2, with T2 . T1; let Tf be the final equilibrium tem-perature. Provided the two bodies are isolated from the rest of the universe and nophase change or chemical reaction occurs, one experimentally observes the followingequation to be satisfied for all values of T1 and T2: (2.30)where c1 and c2 are constants (evaluated experimentally) that depend on the composi-tion of bodies 1 and 2. We call c1 the specific heat capacity (or specific heat) of body1. We define q, the amount of heat that flowed from body 2 to body 1, as equal tom2c2(T2 2 Tf).The unit of heat commonly used in the nineteenth and early twentieth centurieswas the calorie (cal), defined as the quantity of heat needed to raise one gram ofwater from 14.5°C to 15.5°C at 1 atm pressure. (This definition is no longer used,as we shall see in Sec. 2.4.) By definition, 5 1.00 cal/(g °C) at 15°C and 1 atm.Once the specific heat capacity of water has been defined, the specific heat capacityc2 of any other substance can be found from (2.30) by using water as substance 1.When specific heats are known, the heat q transferred in a process can then be cal-culated from (2.30).Actually, (2.30) does not hold exactly, because the specific heat capacities of sub-stances are functions of temperature and pressure. When an infinitesimal amount ofheat dqP flows at constant pressure P into a body of mass m and specific heat capac-ity at constant pressure cP, the body’s temperature is raised by dT and (2.31)where cP is a function of T and P. Summing up the infinitesimal flows of heat, we getthe total heat that flowed as a definite integral: (2.32)qP 5 m#

T2T1  cP1T 2 dT  closed syst., P const.dqP ; mcP dTcH2Om2c21T2 2 Tf 2 5 m1c11Tf 2 T1 2 ; q



The pressure dependence of cP was omitted because P is held fixed for the process.The quantity mcP is the heat capacity at constant pressure CP of the body: CP ; mcP.From (2.31) we have (2.33)Equation (2.30) is more accurately written as (2.34)If the dependence of cP2 and cP1 on T is negligible, (2.34) reduces to (2.30).We gave examples in Sec. 2.2 of reversible and irreversible ways of doing workon a system. Likewise, heat can be transferred reversibly or irreversibly. A reversibletransfer of heat requires that the temperature difference between the two bodies beinfinitesimal. When there is a finite temperature difference between the bodies, the heatflow is irreversible.Two bodies need not be in direct physical contact for heat to flow from one to theother. Radiation transfers heat between two bodies at different temperatures (for ex-ample, the sun and the earth). The transfer occurs by emission of electromagneticwaves by one body and absorption of these waves by the second body. An adiabaticwall must be able to block radiation.Equation (2.32) was written with the implicit assumption that the system is closed(m fixed). As is true for work, the meaning of heat is ambiguous for open systems.(See R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, 1969,pp. 17–21, for a discussion of open systems.)
2.4 THE FIRST LAW OF THERMODYNAMICSAs a rock falls toward the earth, its potential energy is transformed into kinetic energy.When it hits the earth and comes to rest, what has happened to its energy of motion?Or consider a billiard ball rolling on a billiard table. Eventually it comes to rest. Again,what happened to its energy of motion? Or imagine that we stir some water in abeaker. Eventually the water comes to rest, and we again ask: What happened to itsenergy of motion? Careful measurement will show very slight increases in the tem-peratures of the rock, the billiard ball, and the water (and in their immediate sur-roundings). Knowing that matter is composed of molecules, we find it easy to believethat the macroscopic kinetic energies of motion of the rock, the ball, and the waterwere converted into energy at the molecular level. The average molecular transla-tional, rotational, and vibrational energies in the bodies were increased slightly, andthese increases were reflected in the temperature rises.We therefore ascribe an internal energy U to a body, in addition to its macroscopickinetic energy K and potential energy V, discussed in Sec. 2.1. This internal energy con-sists of: molecular translational, rotational, vibrational, and electronic energies; the rel-ativistic rest-mass energy mrestc2 of the electrons and the nuclei; and potential energy ofinteraction between the molecules. These energies are discussed in Sec. 2.11.The total energy E of a body is therefore (2.35)where K and V are the macroscopic (not molecular) kinetic and potential energies ofthe body (due to motion of the body through space and the presence of fields that acton the body) and U is the internal energy of the body (due to molecular motions andintermolecular interactions). Since thermodynamics is a macroscopic science, theE 5 K 1 V 1 Um2#T2Tf  cP21T 2 dT 5 m1#TfT1  cP11T 2 dT 5 qPCP 5 dqP>dT Section 2.4The First Law of Thermodynamics47



Chapter 2The First Law of Thermodynamics48 development of thermodynamics requires no knowledge of the nature of U. All that isneeded is some means of measuring the change in U for a process. This will be pro-vided by the first law of thermodynamics.In most applications of thermodynamics that we shall consider, the system will beat rest and external fields will not be present. Therefore, K and V will be zero, and thetotal energy E will be equal to the internal energy U. (The effect of the earth’s gravi-tational field on thermodynamic systems is usually negligible, and gravity will usuallybe ignored; see, however, Sec. 14.8.) Chemical engineers often deal with systems offlowing fluids; here, K Þ 0.With our present knowledge of the molecular structure of matter, we take it forgranted that a flow of heat between two bodies involves a transfer of internal energybetween them. However, in the eighteenth and nineteenth centuries the molecular the-ory of matter was controversial. The nature of heat was not well understood until about1850. In the late 1700s, most scientists accepted the caloric theory of heat. (Some stu-dents still do, unhappily.) Caloric was a hypothetical fluid substance present in matterand supposed to flow from a hot body to a cold one. The amount of caloric lost by thehot body equaled the amount gained by the cold body. The total amount of caloric wasbelieved to be conserved in all processes.Strong evidence against the caloric theory was provided by Count Rumford in1798. In charge of the army of Bavaria, he observed that, in boring a cannon, a virtu-ally unlimited amount of heating was produced by friction, in contradiction to thecaloric-theory notion of conservation of heat. Rumford found that a cannon borerdriven by one horse for 2.5 hr heated 27 lb of ice-cold water to its boiling point.Addressing the Royal Society of London, Rumford argued that his experiments hadproved the incorrectness of the caloric theory.Rumford began life as Benjamin Thompson of Woburn, Massachusetts. At 19 he marrieda wealthy widow of 30. He served the British during the American Revolution and settledin Europe after the war. He became Minister of War for Bavaria, where he earned extramoney by spying for the British. In 1798 he traveled to London, where he founded theRoyal Institution, which became one of Britain’s leading scientific laboratories. In 1805 hemarried Lavoisier’s widow, adding further to his wealth. His will left money to Harvard toestablish the Rumford chair of physics, which still exists.Despite Rumford’s work, the caloric theory held sway until the 1840s. In 1842Julius Mayer, a German physician, noted that the food that organisms consume goespartly to produce heat to maintain body temperature and partly to produce mechanicalwork performed by the organism. He then speculated that work and heat were bothforms of energy and that the total amount of energy was conserved. Mayer’s argu-ments were not found convincing, and it remained for James Joule to deal the deathblow to the caloric theory.Joule was the son of a wealthy English brewer. Working in a laboratory adjacent tothe brewery, Joule did experiments in the 1840s showing that the same changes producedby heating a substance could also be produced by doing mechanical work on the sub-stance, without transfer of heat. His most famous experiment used descending weightsto turn paddle wheels in liquids. The potential energy of the weights was converted tokinetic energy of the liquid. The viscosity (internal friction) of the liquid then convertedthe liquid’s kinetic energy to internal energy, increasing the temperature. Joule foundthat to increase the temperature of one pound of water by one degree Fahrenheit requiresthe expenditure of 772 foot-pounds of mechanical energy. Based on Joule’s work, thefirst clear convincing statement of the law of conservation of energy was published bythe German surgeon, physiologist, and physicist Helmholtz in 1847.The internal energy of a system can be changed in several ways. Internal energyis an extensive property and thus depends on the amount of matter in the system. The



internal energy of 20 g of H2O at a given T and P is twice the internal energy of 10 gof H2O at that T and P. For a pure substance, the molar internal energy Um isdefined as (2.36)where n is the number of moles of the pure substance. Um is an intensive property thatdepends on P and T.We usually deal with closed systems. Here, the system’s mass is held fixed.Besides changing the mass of a system by adding or removing matter, we canchange the energy of a system by doing work on it or by heating it. The first law of
thermodynamics asserts that there exists an extensive state function E (called the
total energy of the system) such that for any process in a closed system (2.37)where DE is the energy change undergone by the system in the process, q is the heatflow into the system during the process, and w is the work done on the system duringthe process. The first law also asserts that a change in energy DE of the system isaccompanied by a change in energy of the surroundings equal to 2DE, so the totalenergy of system plus surroundings remains constant (is conserved). For any process, 

DEsyst 1 DEsurr 5 0 (2.38)We shall restrict ourselves to systems at rest in the absence of external fields. HereK 5 0 5 V, and from (2.35) we have E 5 U. Equation (2.37) becomes
(2.39)*where DU is the change in internal energy of the system. U is an extensive statefunction.Note that, when we write DU, we mean DUsyst. We always focus attention on thesystem, and all thermodynamic state functions refer to the system unless otherwisespecified. The conventions for the signs of q and w are set from the system’s viewpoint.When heat flows into the system from the surroundings during a process, q is positive(q . 0); an outflow of heat from the system to the surroundings means q is negative.When work is done on the system by the surroundings (for example, in a compressionof the system), w is positive; when the system does work on its surroundings, w is neg-ative. A positive q and a positive w each increase the internal energy of the system.For an infinitesimal process, Eq. (2.39) becomes (2.40)where the other two conditions of (2.39) are implicitly understood. dU is the infini-tesimal change in system energy in a process with infinitesimal heat dq flowing intothe system and infinitesimal work dw done on the system.The internal energy U is (just like P or V or T ) a function of the state of thesystem. For any process, DU thus depends only on the final and initial states of thesystem and is independent of the path used to bring the system from the initial state tothe final state. If the system goes from state 1 to state 2 by any process, then
(2.41)*The symbol D always means the final value minus the initial value.A process in which the final state of the system is the same as the initial state iscalled a cyclic process; here U2 5 U1, and (2.42)which must obviously be true for the change in any state function in a cyclic process.¢U 5 0  cyclic proc.¢U 5 U2 2 U1 5 Ufinal 2 UinitialdU 5 dq 1 dw  closed syst.¢U 5 q 1 w  closed syst. at rest, no fields¢E 5 q 1 w  closed syst.Um ; U>n Section 2.4The First Law of Thermodynamics49



Chapter 2The First Law of Thermodynamics50 In contrast to U, the quantities q and w are not state functions. Given only the ini-tial and final states of the system, we cannot find q or w. The heat q and the work wdepend on the path used to go from state 1 to state 2.Suppose, for example, that we take 1.00 mole of liquid H2O at 25.0°C and1.00 atm and raise its temperature to 30.0°C, the final pressure being 1.00 atm.What is q? The answer is that we cannot calculate q because the process is not speci-fied. We could, if we like, increase the temperature by heating at 1 atm. In this case,q 5 mcP DT 5 18.0 g 3 1.00 cal/(g °C) 3 5.0°C 5 90 cal. However, we could insteademulate James Joule and increase T solely by doing work on the water, stirring it witha paddle (made of an adiabatic substance) until the water reached 30.0°C. In this case,q 5 0. Or we could heat the water to some temperature between 25°C and 30°C andthen do enough stirring to bring it up to 30°C. In this case, q is between 0 and 90 cal.Each of these processes also has a different value of w. However, no matter how webring the water from 25°C and 1.00 atm to 30.0°C and 1.00 atm, DU is always thesame, since the final and initial states are the same in each process.
EXAMPLE 2.3 Calculation of DUCalculate DU when 1.00 mol of H2O goes from 25.0°C and 1.00 atm to 30.0°Cand 1.00 atm.Since U is a state function, we can use any process we like to calculate DU.A convenient choice is a reversible heating from 25°C to 30°C at a fixed pres-sure of 1 atm. For this process, q 5 90 cal, as calculated above. During the heat-ing, the water expands slightly, doing work on the surrounding atmosphere. Atconstant P, we have w 5 wrev 5 2e21 P dV 5 2P e21 dV 5 2P(V2 2 V1)where (2.27) was used. Because P is constant, it can be taken outside the inte-gral. The volume change is DV 5 V2 2 V1 5 m/r2 2 m/r1, where r2 and r1 arethe final and initial densities of the water and m 5 18.0 g. A handbook gives
r2 5 0.9956 g/cm3 and r1 5 0.9970 g/cm3. We find DV 5 0.025 cm3 and(2.43)where two values of R were used to convert w to calories. Thus, w is com-pletely negligible compared with q, and DU 5 q 1 w 5 90 cal. Because vol-ume changes of liquids and solids are small, usually P-V work is significantonly for gases.
ExerciseCalculate q, w, and DU when 1.00 mol of water is heated from 0°C to 100°Cat a fixed pressure of 1 atm. Densities of water are 0.9998 g/cm3 at 0°C and0.9854 g/cm3 at 100°C. (Answer: 1800 cal, 20.006 cal, 1800 cal.)Although the values of q and w for a change from state 1 to state 2 depend on theprocess used, the value of q 1 w, which equals DU, is the same for every process thatgoes from state 1 to state 2. This is the experimental content of the first law.Since q and w are not state functions, it is meaningless to ask how much heat asystem contains (or how much work it contains). Although one often says that “heatand work are forms of energy,” this language, unless properly understood, can mislead5 20.0006 cal w 5 20.025 cm3 atm 5 20.025 cm3 atm  

1.987 cal mol21 K2182.06 cm3 atm mol21 K21



one into the error of regarding heat and work as state functions. Heat and work aredefined only in terms of processes. Before and after the process of energy transferbetween system and surroundings, heat and work do not exist. Heat is an energy trans-fer between system and surroundings due to a temperature difference. Work is an en-ergy transfer between system and surroundings due to a macroscopic force actingthrough a distance. Heat and work are forms of energy transfer rather than forms ofenergy. Work is energy transfer due to the action of macroscopically observableforces. Heat is energy transfer due to the action of forces at a molecular level. Whenbodies at different temperatures are placed in contact, collisions between molecules ofthe two bodies produce a net transfer of energy to the colder body from the hotterbody, whose molecules have a greater average kinetic energy than those in the colderbody. Heat is work done at the molecular level.Much of the terminology of heat is misleading because it is a relic of the erro-neous caloric theory of heat. Thus, one often refers to “heat flow” between system andsurroundings. In reality, the so-called heat flow is really an energy flow due to a tem-perature difference. Likewise, the term “heat capacity” for CP is misleading, since itimplies that bodies store heat, whereas heat refers only to energy transferred in aprocess; bodies contain internal energy but do not contain heat.Heat and work are measures of energy transfer, and both have the same units asenergy. The unit of heat can therefore be defined in terms of the joule. Thus the defi-nition of the calorie given in Sec. 2.3 is no longer used. The present definition is
(2.44)*where the value 4.184 was chosen to give good agreement with the old definition ofthe calorie. The calorie defined by (2.44) is called the thermochemical calorie, oftendesignated calth. (Over the years, several slightly different calories have been used.)It is not necessary to express heat in calories. The joule can be used as the unit ofheat. This is what is done in the officially recommended SI units (Sec. 2.1), but sincesome of the available thermochemical tables use calories, we shall use both joules andcalories as the units of heat, work, and internal energy.Although we won’t be considering systems with mechanical energy, it is worthwhile toconsider a possible source of confusion that can arise when dealing with such systems.Consider a rock falling in vacuum toward the earth’s surface. Its total energy is E 5 K 1V 1 U. Since the gravitational potential energy V is included as part of the system’s energy,the gravitational field (in which the potential energy resides) must be considered part of thesystem. In the first-law equation DE 5 q 1 w, we do not include work that one part of thesystem does on another part of the system. Hence w in the first law does not include the workdone by the gravitational field on the falling body. Thus for the falling rock, w is zero; also,q is zero. Therefore DE 5 q 1 w is zero, and E remains constant as the body falls (althoughboth K and V vary). In general, w in DE 5 q 1 w does not include the work done by con-servative forces (forces related to the potential energy V in E 5 K 1 V 1 U).Sometimes people get the idea that Einstein’s special relativity equation E 5 mc2 in-validates the conservation of energy, the first law of thermodynamics. This is not so. AllE 5 mc2 says is that a mass m always has an energy mc2 associated with it and an energyE always has a mass m 5 E/c2 associated with it. The total energy of system plus sur-roundings is still conserved in special relativity; likewise, the total relativistic mass ofsystem plus surroundings is conserved in special relativity. Energy cannot disappear; masscannot disappear. The equation DE 5 q 1 w is still valid in special relativity. Consider, forexample, nuclear fission. Although it is true that the sum of the rest masses of the nuclearfragments is less than the rest mass of the original nucleus, the fragments are moving at highspeed. The relativistic mass of a body increases with increasing speed, and the total rela-tivistic mass of the fragments exactly equals the relativistic mass of the original nucleus.1 cal ; 4.184 J  exactly Section 2.4The First Law of Thermodynamics51



Chapter 2The First Law of Thermodynamics52 [Some physicists argue against the use of the concept of relativistic mass and the use of theformula E 5 mc2 (where m is the relativistic mass). For opposing viewpoints, see G. Oas,arxiv.org/abs/physics/0504110; T. R. Sandin, Am. J. Phys., 59, 1032 (1991).]
2.5 ENTHALPYThe enthalpy H of a thermodynamic system whose internal energy, pressure, and vol-ume are U, P, and V is defined as

(2.45)*Since U, P, and V are state functions, H is a state function. Note from dwrev 5 2P dVthat the product of P and V has the dimensions of work and hence of energy. Thereforeit is legitimate to add U and PV. Naturally, H has units of energy.Of course, we could take any dimensionally correct combination of state functionsto define a new state function. Thus, we might define (3U 2 5PV )/T 3 as the state func-tion “enwhoopee.” The motivation for giving a special name to the state function U 1PV is that this combination of U, P, and V occurs often in thermodynamics. Forexample, let qP be the heat absorbed in a constant-pressure process in a closed system.The first law DU 5 q 1 w [Eq. (2.39)] gives
(2.46)*since P1 5 P2 5 P. In the derivation of (2.46), we used (2.27) (wrev 5 2e21 P dV ) forthe work w. Equation (2.27) gives the work associated with a volume change of thesystem. Besides a volume change, there are other ways that system and surroundingscan exchange work, but we won’t consider these possibilities until Chapter 7. Thus(2.46) is valid only when no kind of work other than volume-change work is done. Notealso that (2.27) is for a mechanically reversible process. A constant-pressure process ismechanically reversible since, if there were unbalanced mechanical forces acting, thesystem’s pressure P would not remain constant. Equation (2.46) says that for a closedsystem that can do only P-V work, the heat qP absorbed in a constant-pressure processequals the system’s enthalpy change.For any change of state, the enthalpy change is (2.47)where D(PV ) ; (PV )2 2 (PV )1 5 P2V2 2 P1V1. For a constant-pressure process, P2 5P1 5 P and D(PV ) 5 PV2 2 PV1 5 P DV. Therefore (2.48)An error students sometimes make is to equate D(PV ) with P DV 1 V DP. We have Because of the DP DV term, D(PV) Þ P DV 1 V DP. For infinitesimal changes, wehave d(PV) 5 P dV 1 V dP, since d(uv) 5 u dv 1 v du [Eq. (1.28)], but the corre-sponding equation is not true for finite changes. [For an infinitesimal change, the equa-tion after (2.48) becomes d(PV) 5 P dV 1 V dP 1 dP dV 5 P dV 1 V dP, since theproduct of two infinitesimals can be neglected.]5 P1¢V 1 V1¢P 1 ¢P¢V¢1PV 2 5 P2V2 2 P1V1 5 1P1 1 ¢P 2 1V1 1 ¢V 2 2 P1V1¢H 5 ¢U 1 P¢V  const. P¢H 5 H2 2 H1 5 U2 1 P2V2 2 1U1 1 P1V1 2 5 ¢U 1 ¢ 1PV 2¢H 5 qP  const. P, closed syst., P-V work onlyqP 5 U2 1 PV2 2 U1 2 PV1 5 1U2 1 P2V2 2 2 1U1 1 P1V1 2 5 H2 2 H1U2 2 U1 5 q 1 w 5 q 2 #

V2V1  P dV 5 qP 2 P#
V2V1  dV 5 qP 2 P1V2 2 V1 2H ; U 1 PV



Since U and V are extensive, H is extensive. The molar enthalpy of a pure sub-stance is Hm 5 H/n 5 (U 1 PV )/n 5 Um 1 PVm.Consider now a constant-volume process. If the closed system can do only P-Vwork, then w must be zero, since no P-V work is done in a constant-volume process.The first law DU 5 q 1 w then becomes for a constant-volume process (2.49)where qV is the heat absorbed at constant volume. Comparison of (2.49) and (2.46)shows that in a constant-pressure process H plays a role analogous to that played byU in a constant-volume process.From Eq. (2.47), we have DH 5 DU 1 D(PV ). Because solids and liquids havecomparatively small volumes and undergo only small changes in volume, in nearly allprocesses that involve only solids or liquids (condensed phases) at low or moderatepressures, the D(PV ) term is negligible compared with the DU term. (For example,recall the example in Sec. 2.4 of heating liquid water, where we found DU 5 qP.) Forcondensed phases not at high pressures, the enthalpy change in a process is essentiallythe same as the internal-energy change: DH < DU.
2.6 HEAT CAPACITIESThe heat capacity Cpr of a closed system for an infinitesimal process pr is defined as 

(2.50)*where dqpr and dT are the heat flowing into the system and the temperature change ofthe system in the process. The subscript on C indicates that the heat capacity dependson the nature of the process. For example, for a constant-pressure process we get CP,the heat capacity at constant pressure (or isobaric heat capacity):
(2.51)*Similarly, the heat capacity at constant volume (or isochoric heat capacity) CV of aclosed system is
(2.52)*where dqV and dT are the heat added to the system and the system’s temperature changein an infinitesimal constant-volume process. Strictly speaking, Eqs. (2.50) to (2.52)apply only to reversible processes. In an irreversible heating, the system may developtemperature gradients, and there will then be no single temperature assignable to thesystem. If T is undefined, the infinitesimal change in temperature dT is undefined.Equations (2.46) and (2.49) written for an infinitesimal process give dqP 5 dH atconstant pressure and dqV 5 dU at constant volume. Therefore (2.51) and (2.52) canbe written as
(2.53)*CP and CV give the rates of change of H and U with temperature.To measure CP of a solid or liquid, one holds it at constant pressure in an adiabat-ically enclosed container and heats it with an electrical heating coil. For a current Iflowing for a time t through a wire with a voltage drop V across the wire, the heat gen-erated by the coil is VIt. If the measured temperature increase DT in the substance issmall, Eq. (2.51) gives CP 5 VIt/DT, where CP is the value at the average temperatureCP 5 a 0H

0T bP,  CV 5 a 0U
0T bV  closed syst. in equilib., P-V work onlyCV ;

dqVdTCP ;
dqPdTCpr ; dqpr>dT¢U 5 qV  closed syst., P-V work only, V const. Section 2.6Heat Capacities53



Chapter 2The First Law of Thermodynamics54 of the experiment and at the pressure of the experiment. CP of a gas is found from thetemperature increase produced by electrically heating the gas flowing at a known rate.The thermodynamic state of an equilibrium system at rest in the absence of ap-plied fields is specified by its composition (the number of moles of each componentpresent in each phase) and by any two of the three variables P, V, and T. Commonly,P and T are used. For a closed system of fixed composition, the state is specified by Pand T. Any state function has a definite value once the system’s state is specified.Therefore any state function of a closed equilibrium system of fixed composition is afunction of T and P. For example, for such a system, H 5 H(T, P). The partial deriv-ative (­H(T, P)/­T )P is also a function of T and P. Hence CP is a function of T and Pand is therefore a state function. Similarly, U can be taken as a function of T and V,and CV is a state function.For a pure substance, the molar heat capacities at constant P and at constant Vare CP,m 5 CP/n and CV,m 5 CV/n. Some CP,m values at 25°C and 1 atm are plotted inFig. 2.4. The Appendix gives further values. Clearly, CP,m increases with increasingsize of the molecules. See Sec. 2.11 for discussion of CP,m values.For a one-phase system of mass m, the specific heat capacity cP is cP ; CP/m.The adjective specific means “divided by mass.” Thus, the specific volume v and spe-
cific enthalpy h of a phase of mass m are v ; V/m 5 1/r and h ; H/m.Do not confuse the heat capacity CP (which is an extensive property) with themolar heat capacity CP,m or the specific heat capacity cP (which are intensive proper-ties). We have

(2.54)*
(2.55)*CP,m and cP are functions of T and P. Figure 2.5 plots some data for H2O(g). Thesecurves are discussed in Sec. 8.6.One can prove from the laws of thermodynamics that for a closed system, CP andCV must both be positive. (See Münster, sec. 40.) (2.56)Exceptions to (2.56) are systems where gravitational effects are important. Such sys-tems (for example, black holes, stars, and star clusters) can have negative heat capac-ities [D. Lynden-Bell, Physica A, 263, 293 (1999)].What is the relation between CP and CV? We have (2.57)We expect (­U/­T )P and (­U/­T )V in (2.57) to be related to each other. In(­U/­T )V, the internal energy is taken as a function of T and V; U 5 U(T, V ). The totaldifferential of U(T, V ) is [Eq. (1.30)] (2.58)Equation (2.58) is valid for any infinitesimal process, but since we want to relate(­U/­T )V to (­U/­T )P, we impose the restriction of constant P on (2.58) to give(2.59)dUP 5 a 0U

0T bV dTP 1 a 0U
0V bT dVPdU 5 a 0U

0T bV dT 1 a 0U
0V bT dVCP 2 CV 5 a 0U

0T bP 1 P a 0V
0T bP 2 a 0U

0T bVCP 2 CV 5 a 0H
0T bP 2 a 0U

0T bV 5 a 0 1U 1 PV 2
0T bP 2 a 0U

0T bVCP 7 0,  CV 7 0cP ; CP>m  one-phase system CP,m ; CP>n  pure substance
Figure 2.4Molar heat capacities CP,m at 25°Cand 1 bar. The scale islogarithmic.



where the P subscripts indicate that the infinitesimal changes dU, dT, and dV occur atconstant P. Division by dTP givesThe ratio of infinitesimals dUP/dTP is the partial derivative (­U/­T )P, so (2.60)Substitution of (2.60) into (2.57) gives the desired relation: (2.61)The state function (­U/­V )T in (2.61) has dimensions of pressure and is some-times called the internal pressure. Clearly, (­U/­V )T is related to that part of theinternal energy U that is due to intermolecular potential energy. A change in the sys-tem’s volume V will change the average intermolecular distance and hence the aver-age intermolecular potential energy. For gases not at high pressure, the smallness ofintermolecular forces makes (­U/­V )T in (2.61) small. For liquids and solids, wheremolecules are close to one another, the large intermolecular forces make (­U/­V )Tlarge. Measurement of (­U/­V )T in gases is discussed in Sec. 2.7.
2.7 THE JOULE AND JOULE–THOMSON EXPERIMENTSIn 1843 Joule tried to determine (­U/­V )T for a gas by measuring the temperaturechange after free expansion of the gas into a vacuum. This experiment was repeatedby Keyes and Sears in 1924 with an improved setup (Fig. 2.6).Initially, chamber A is filled with a gas, and chamber B is evacuated. The valvebetween the chambers is then opened. After equilibrium is reached, the temperaturechange in the system is measured by the thermometer. Because the system is sur-rounded by adiabatic walls, q is 0; no heat flows into or out of the system. Theexpansion into a vacuum is highly irreversible. Finite unbalanced forces act withinthe system, and as the gas rushes into B, there is turbulence and lack of pressureequilibrium. Therefore dw 5 2P dV does not apply. However, we can readily cal-culate the work 2w done by the system. The only motion that occurs is within thesystem itself. Therefore the gas does no work on its surroundings, and vice versa.Hence w 5 0 for expansion into a vacuum. Since DU 5 q 1 w for a closed system,we have DU 5 0 1 0 5 0. This is a constant-energy process. The experiment mea-sures the temperature change with change in volume at constant internal energy,(­T/­V )U. More precisely, the experiment measures DT/DV at constant U. Themethod used to get (­T/­V )U from DT/DV measurements is similar to that describedlater in this section for (­T/­P)H.We define the Joule coefficient mJ (mu jay) as (2.62)How is the measured quantity (­T/­V )U 5 mJ related to (­U/­V )T? The variables inthese two partial derivatives are the same (namely, T, U, and V ). Hence we can usemJ ; 10T>0V 2UCP 2 CV 5 c a 0U

0V bT 1 P d a 0V
0T bPa 0U

0T bP 5 a 0U
0T bV 1 a 0U

0V bT a 0V0T bPdUPdTP 5 a 0U
0T bV 1 a 0U

0V bT dVPdTP Section 2.7The Joule and Joule–Thomson Experiments55

Figure 2.5Specific heat of H2O(g) plottedversus T and versus P.
Figure 2.6The Keyes–Sears modification ofthe Joule experiment.



Chapter 2The First Law of Thermodynamics56 (­x/­y)z(­y/­z)x(­z/­x)y 5 21 [Eq. (1.34)] to relate these partial derivatives.Replacement of x, y, and z with T, U, and V gives (2.63)where (­z/­x)y 5 1/(­x/­z)y, (­U/­T)V 5 CV, and mJ 5 (­T/­V )U [Eqs. (1.32), (2.53),and (2.62)] were used.Joule’s 1843 experiment gave zero for mJ and hence zero for (­U/­V )T. However,his setup was so poor that his result was meaningless. The 1924 Keyes–Sears experi-ment showed that (­U/­V )T is small but definitely nonzero for gases. Because ofexperimental difficulties, only a few rough measurements were made.In 1853 Joule and William Thomson (in later life Lord Kelvin) did an experimentsimilar to the Joule experiment but allowing far more accurate results to be obtained.The Joule–Thomson experiment involves the slow throttling of a gas through a rigid,porous plug. An idealized sketch of the experiment is shown in Fig. 2.7. The systemis enclosed in adiabatic walls. The left piston is held at a fixed pressure P1. The rightpiston is held at a fixed pressure P2 , P1. The partition B is porous but not greatly so.This allows the gas to be slowly forced from one chamber to the other. Because thethrottling process is slow, pressure equilibrium is maintained in each chamber.Essentially all the pressure drop from P1 to P2 occurs in the porous plug.We want to calculate w, the work done on the gas in throttling it through the plug.The overall process is irreversible since P1 exceeds P2 by a finite amount, and aninfinitesimal change in pressures cannot reverse the process. However, the pressuredrop occurs almost completely in the plug. The plug is rigid, and the gas does no workon the plug, or vice versa. The exchange of work between system and surroundingsoccurs solely at the two pistons. Since pressure equilibrium is maintained at each pis-ton, we can use dwrev 5 2P dV to calculate the work at each piston. The left pistondoes work wL on the gas. We have dwL 5 2PL dV 5 2P1 dV, where we use subscriptsL and R for left and right. Let all the gas be throttled through. The initial and final vol-umes of the left chamber are V1 and 0, soThe right piston does work dwR on the gas. (wR is negative, since the gas in the rightchamber does positive work on the piston.) We have Thework done on the gas is w 5 wL 1 wR 5 P1V1 2 P2V2.wR 5 2eV20  

P2 dV 5 2P2V2 .wL 5 2#
0V1 P1 dV 5 2P1 #

0V1 dV 5 2P110 2 V1 2 5 P1V1a 0U
0V bT 5 2CVmJa 0U

0V bT 5 2 c a 0T
0U bV d21 c a 0V

0T bU d21
5 2 a 0U

0T bV a 0T0V bUa 0T
0U bV a 0U0V bT a 0V0T bU 5 21Porous Plug(a)P1 P2P1, V1,T1 (b)Adiabatic WallBP1 P2P2P1 (c)P1 P2P2, V2,T2

Figure 2.7The Joule–Thomson experiment.



The first law for this adiabatic process (q 5 0) gives U2 2 U1 5 q 1 w 5 w, soU2 2 U1 5 P1V1 2 P2V2 or U2 1 P2V2 5 U1 1 P1V1. Since H ; U 1 PV, we haveThe initial and final enthalpies are equal in a Joule–Thomson expansion.Measurement of the temperature change DT 5 T2 2 T1 in the Joule–Thomsonexperiment gives DT/DP at constant H. This may be compared with the Joule experi-ment, which measures DT/DV at constant U.We define the Joule–Thomson coefficient mJT by
(2.64)*

mJT is the ratio of infinitesimal changes in two intensive properties and therefore is anintensive property. Like any intensive property, it is a function of T and P (and the na-ture of the gas).A single Joule–Thomson experiment yields only (DT/DP)H. To find (­T/­P)H val-ues, we proceed as follows. Starting with some initial P1 and T1, we pick a value ofP2 less than P1 and do the throttling experiment, measuring T2. We then plot the twopoints (T1, P1) and (T2, P2) on a T-P diagram; these are points 1 and 2 in Fig. 2.8.Since DH 5 0 for a Joule–Thomson expansion, states 1 and 2 have equal enthalpies.A repetition of the experiment with the same initial P1 and T1 but with the pressureon the right piston set at a new value P3 gives point 3 on the diagram. Several repe-titions, each with a different final pressure, yield several points that correspond tostates of equal enthalpy. We join these points with a smooth curve (called an isen-thalpic curve). The slope of this curve at any point gives (­T/­P)H for the tempera-ture and pressure at that point. Values of T and P for which mJT is negative (points tothe right of point 4) correspond to warming on Joule–Thomson expansion. At point4, mJT is zero. To the left of point 4, mJT is positive, and the gas is cooled by throt-tling. To generate further isenthalpic curves and get more values of mJT (T, P), we usedifferent initial temperatures T1.Values of mJT for gases range from 13 to 20.1°C/atm, depending on the gas andon its temperature and pressure. Figure 2.9 plots some mJT data for N2 gas.Joule–Thomson throttling is used to liquefy gases. For a gas to be cooled by aJoule–Thomson expansion (DP , 0), its mJT must be positive over the range of T andP involved. In Joule–Thomson liquefaction of gases, the porous plug is replaced by anarrow opening (a needle valve). Another method of gas liquefaction is an approxi-mately reversible adiabatic expansion against a piston.A procedure similar to that used to derive (2.63) yields (Prob. 2.35a) (2.65)We can use thermodynamic identities to relate the Joule and Joule–Thomson coeffi-cients; see Prob. 2.35b. a 0H
0P bT 5 2CPmJTmJT ; a 0T

0P bHH2 5 H1    or    ¢H 5 0 Section 2.7The Joule and Joule–Thomson Experiments57

Figure 2.8An isenthalpic curve obtainedfrom a series of Joule–Thomsonexperiments.
Figure 2.9The Joule–Thomson coefficient of N2(g) plotted versus P andversus T.
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2.8 PERFECT GASES AND THE FIRST LAW

Perfect GasesAn ideal gas was defined in Chapter 1 as a gas that obeys the equation of state PV 5nRT. The molecular picture of an ideal gas is one with no intermolecular forces. If wechange the volume of an ideal gas while holding T constant, we change the averagedistance between the molecules, but since intermolecular forces are zero, this distancechange will not affect the internal energy U. Also, the average translational kineticenergy of the gas molecules is a function of T only (as is also true of the molecularrotational and vibrational energies—see Sec. 2.11) and will not change with volume.We therefore expect that, for an ideal gas, U will not change with V at constant T and(­U/­V )T will be zero. However, we are not yet in a position to prove this thermody-namically. To maintain the logical development of thermodynamics, we therefore nowdefine a perfect gas as one that obeys both the following equations:
(2.66)*An ideal gas is required to obey only PV 5 nRT. Once we have postulated the secondlaw of thermodynamics, we shall prove that (­U/­V )T 5 0 follows from PV 5 nRT,so there is in fact no distinction between an ideal gas and a perfect gas. Until then, weshall maintain the distinction between the two.For a closed system in equilibrium, the internal energy (and any other state func-tion) can be expressed as a function of temperature and volume: U 5 U(T, V ).However, (2.66) states that for a perfect gas U is independent of volume. Therefore Uof a perfect gas depends only on temperature:
(2.67)*Since U is independent of V for a perfect gas, the partial derivative (­U/­T )V inEq. (2.53) for CV becomes an ordinary derivative: CV 5 dU/dT and
(2.68)*It follows from (2.67) and CV 5 dU/dT that CV of a perfect gas depends only on T:
(2.69)*For a perfect gas, H ; U 1 PV 5 U 1 nRT. Hence (2.67) shows that H dependsonly on T for a perfect gas. Using CP 5 (­H/­T )P [Eq. (2.53)], we then have
(2.70)*Use of (­U/­V)T 5 0 [Eq. (2.66)] in CP 2 CV 5 [(­U/­V )T 1 P](­V/­T )P[Eq. (2.61)] gives (2.71)From PV 5 nRT, we get (­V/­T )P 5 nR/P. Hence for a perfect gas CP 2 CV 5 nR or
(2.72)*We have mJCV 5 2(­U/­V )T [Eq. (2.63)]. Since (­U/­V )T 5 0 for a perfect gas,it follows that mJ 5 0 for a perfect gas. Also, mJTCP 5 2(­H/­P)T [Eq. (2.65)].Since H depends only on T for a perfect gas, we have (­H/­P)T 5 0 for such a gas,and mJT 5 0 for a perfect gas. Surprisingly, as Fig. 2.9 shows, mJT for a real gas doesnot go to zero as P goes to zero. (See Prob. 8.37 for analysis of this fact.)We now apply the first law to a perfect gas. For a reversible volume change, dw 5 2P dV [Eq. (2.26)]. Also, (2.68) gives dU 5 CV dT for a perfect gas. For a fixedamount of a perfect gas, the first law dU 5 dq 1 dw (closed system) becomes (2.73)dU 5 CV dT 5 dq 2 P dV  perf. gas, rev. proc., P-V work onlyCP,m 2 CV,m 5 R  perf. gasCP 2 CV 5 P10V>0T 2P  perf. gasH 5 H1T 2 ,  CP 5 dH>dT,  CP 5 CP1T 2  perf. gasCV 5 CV 1T 2  perf. gasdU 5 CV dT  perf. gasU 5 U1T 2  perf. gasPV 5 nRT and 10U>0V 2T 5 0  perfect gas
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EXAMPLE 2.4 Calculation of q, w, and DUSuppose 0.100 mol of a perfect gas having CV,m 5 1.50R independent of tem-perature undergoes the reversible cyclic process 1 → 2 → 3 → 4 → 1 shown inFig. 2.10, where either P or V is held constant in each step. Calculate q, w, and
DU for each step and for the complete cycle.Since we know how P varies in each step and since the steps are reversible,we can readily find w for each step by integrating dwrev 5 2P dV. Since eitherV or P is constant in each step, we can integrate dqV 5 CV dT and dqP 5 CP dT[Eqs. (2.51) and (2.52)] to find the heat in each step. The first law DU 5 q 1 wthen allows calculation of DU.To evaluate integrals like e21 CV dT, we will need to know the temperaturesof states 1, 2, 3, and 4. We therefore begin by using PV 5 nRT to find these tem-peratures. For example, T1 5 P1V1/nR 5 122 K. Similarly, T2 5 366 K, T3 5732 K, T4 5 244 K.Step 1 → 2 is at constant volume, no work is done, and w1→2 5 0. Step 2 → 3 is at constant pressure andwhere two values of R were used to convert to joules. Similarly, w3→4 5 0 andw4→1 5 101 J. The work w for the complete cycle is the sum of the works forthe four steps, so w 5 2304 J 1 0 1 101 J 1 0 5 2203 J.Step 1 → 2 is at constant volume, andStep 2 → 3 is at constant pressure, and q2→3 5 e32 CP dT. Equation (2.72) givesCP,m 5 CV,m 1 R 5 2.50R, and we find q2→3 5 761 J. Similarly, q3→4 5

2608 J and q4→1 5 2253 J. The total heat for the cycle is q 5 304 J 1We have DU1→2 q1→2 w1→2 304 J 1 0 304 J. Similarly, we find
DU2→3 5 457 J, DU3→4 5 2608 J, DU4→1 5 2152 J. For the complete cycle,
DU 5 304 J 1 457 J 2 608 J 2 152 J 5 0, which can also be found from q 1 w as 203 J 2 203 J 5 0. An alternative procedure is to use the perfect-gasequation dU 5 CV dT to find DU for each step.For this cyclic process, we found DU 5 0, q Þ 0, and w Þ 0. These resultsare consistent with the fact that U is a state function but q and w are not.
ExerciseUse the perfect-gas equation dU 5 CV dT to find DU for each step in the cycleof Fig. 2.10. (Answer: 304 J, 456 J, 2609 J, 2152 J.)
ExerciseVerify that w for the reversible cyclic process in this example equals minus thearea enclosed by the lines in Fig. 2.10. 1212 1212 5515

761 J 2 60812 J 2 253 12 J 5 203 J.1212 5 10.100 mol 21.50 38.314 J> 1mol K 2 4 1366 K 2 122 K 2 5 304 J q1S2 5 #
21  CV 

dT 5 nCV,m# 21  

dT 5 n11.50R 2 1T2 2 T1 25 23000 cm3 atm 18.314 J 2 > 182.06 cm3 atm 2 5 2304 J w2S3 5 2#
32  

P dV 5 2P1V3 2 V2 2 5 213.00 atm 2 12000 cm3
2 1000 cm3 2 Figure 2.10A reversible cyclic process.
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Reversible Isothermal Process in a Perfect GasConsider the special case of a reversible isothermal (constant-T) process in a perfectgas. (Throughout this section, the system is assumed closed.) For a fixed amount of aperfect gas, U depends only on T [Eq. (2.67)]. Therefore DU 5 0 for an isothermalchange of state in a perfect gas. This also follows from dU 5 CV dT for a perfect gas.The first law DU 5 q 1 w becomes 0 5 q 1 w and q 5 2w. Integration of dwrev 5

2P dV and use of PV 5 nRT give (2.74)where Boyle’s law was used. If the process is an expansion (V2 . V1), then w (the workdone on the gas) is negative and q (the heat added to the gas) is positive. All the addedheat appears as work done by the gas, maintaining U as constant for the perfect gas.It is best not to memorize an equation like (2.74), since it can be quickly derived fromdw 5 2P dV.To carry out a reversible isothermal volume change in a gas, we imagine the gas tobe in a cylinder fitted with a frictionless piston. We place the cylinder in a very largeconstant-temperature bath (Fig. 2.11) and change the external pressure on the piston atan infinitesimal rate. If we increase the pressure, the gas is slowly compressed. The workdone on it will transfer energy to the gas and will tend to increase its temperature at aninfinitesimal rate. This infinitesimal temperature increase will cause heat to flow out ofthe gas to the surrounding bath, thereby maintaining the gas at an essentially constanttemperature. If we decrease the pressure, the gas slowly expands, thereby doing workon its surroundings, and the resulting infinitesimal drop in gas temperature will causeheat to flow into the gas from the bath, maintaining constant temperature in the gas.
EXAMPLE 2.5 Calculation of q, w, and DUA cylinder fitted with a frictionless piston contains 3.00 mol of He gas at P 51.00 atm and is in a large constant-temperature bath at 400 K. The pressure is re-versibly increased to 5.00 atm. Find w, q, and DU for this process.It is an excellent approximation to consider the helium as a perfect gas.Since T is constant, DU is zero [Eq. (2.68)]. Equation (2.74) givesAlso, q 5 2w 5 21.61 3 104 J. Of course, w (the work done on the gas) is pos-itive for the compression. The heat q is negative because heat must flow from thegas to the surrounding constant-temperature bath to maintain the gas at 400 K asit is compressed.

Exercise0.100 mol of a perfect gas with CV,m 5 1.50R expands reversibly and isother-mally at 300 K from 1.00 to 3.00 L. Find q, w, and DU for this process. (Answer:274 J, 2274 J, 0.)
Reversible Constant-P (or Constant-V ) Process in a Perfect GasThe calculations of q, w, and DU for these processes were shown in Example 2.4.w 5 19980 J 2 11.609 2 5 1.61 3 104 Jw 5 13.00 mol 2 18.314 J mol21 K21 2 1400 K 2  ln 15.00>1.00 2 5 19980 J 2  ln 5.00w 5 2q 5 nRT ln V1V2 5 nRT ln P2P1  rev. isothermal proc., perf. gas w 5 2#

21  
P dV 5 2#

21 nRTV  dV 5 2nRT#
21 1V dV 5 2nRT 1ln V2 2 ln V1 2SystemBath

Figure 2.11Setup for an isothermal volumechange.



Reversible Adiabatic Process in a Perfect GasFor an adiabatic process, dq 5 0. For a reversible process in a system with only P-Vwork, dw 5 2P dV. For a perfect gas, dU 5 CV dT [Eq. (2.68)]. Therefore, for a re-versible adiabatic process in a perfect gas, the first law dU 5 dq 1 dw becomeswhere PV 5 nRT and CV,m 5 CV /n were used. To integrate this equation, we separatethe variables, putting all functions of T on one side and all functions of V on the otherside. We get (CV,m/T )dT 5 2(R/V )dV. Integration gives (2.75)For a perfect gas, CV,m is a function of T [Eq. (2.69)]. If the temperature change in theprocess is small, CV,m will not change greatly and can be taken as approximately constant.Another case where CV,m is nearly constant is for monatomic gases, where CV,m is essen-tially independent of T over a very wide temperature range (Sec. 2.11 and Fig. 2.15).The approximation that CV,m is constant gives e21 (CV,m/T ) dT 5 CV,m e21 T21 dT 5CV,m ln (T2/T1), and Eq. (2.75) becomes CV,m ln (T2/T1) 5 R ln (V1/V2) orwhere k ln x 5 ln xk [Eq. (1.70)] was used. If ln a 5 ln b, then a 5 b. Therefore(2.76)Since CV is always positive [Eq. (2.56)], Eq. (2.76) says that, when V2 . V1, wewill have T2 , T1. A perfect gas is cooled by a reversible adiabatic expansion. In ex-panding adiabatically, the gas does work on its surroundings, and since q is zero, Umust decrease; therefore T decreases. A near-reversible, near-adiabatic expansion isone method used in refrigeration.An alternative equation is obtained by using P1V1/T1 5 P2V2/T2. Equation (2.76)becomesThe exponent is 1 1 R/CV,m 5 (CV,m 1 R)/CV,m 5 CP,m/CV,m, since CP,m 2 CV,m 5 Rfor a perfect gas [Eq. (2.72)]. Defining the heat-capacity ratio g (gamma) aswe have (2.77)For an adiabatic process, DU 5 q 1 w 5 w. For a perfect gas, dU 5 CV dT. Withthe approximation of constant CV, we have (2.78)To carry out a reversible adiabatic process in a gas, the surrounding constant-temperature bath in Fig. 2.11 is replaced by adiabatic walls, and the external pressureis slowly changed.We might compare a reversible isothermal expansion of a perfect gas with areversible adiabatic expansion of the gas. Let the gas start from the same initial P1 andV1 and go to the same V2. For the isothermal process, T2 5 T1. For the adiabaticexpansion, we showed that T2 , T1. Hence the final pressure P2 for the adiabaticexpansion must be less than P2 for the isothermal expansion (Fig. 2.12).¢U 5 CV 1T2 2 T1 2 5 w  perf. gas, ad. proc., CV const.P1V1g 5 P2Vg2  perf. gas, rev. ad. proc., CV const.g ; CP>CVP2V2>P1V1 5 1V1>V2 2R>CV,m
 and P1V 111R>CV,m 5 P2V 211R>CV,mT2T1 5 a V1V2 bR>CV,m

  perf. gas, rev. adiabatic proc., CV const.ln 1T2>T1 2 5 ln 1V1>V2 2R>CV,m#
21 CV,mT  dT 5 2#

21 RV  dV 5 2R1ln V2 2 ln V1 2 5 R ln V1V2CV,m 
dT 5 21RT>V 2 dVCV 

dT 5 2P dV 5 21nRT>V 2 dV Section 2.8Perfect Gases and the First Law61

Figure 2.12Ideal-gas reversible isothermal andadiabatic expansions that startfrom the same state.
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SummaryA perfect gas obeys PV 5 nRT, has (­U/­V )T 5 0 5 (­H/­P)T, has U, H, CV, and CPdepending on T only, has CP 2 CV 5 nR, and has dU 5 CV dT and dH 5 CP dT. Theseequations are valid only for a perfect gas. A common error students make is to use oneof these equations where it does not apply.
2.9 CALCULATION OF FIRST-LAW QUANTITIESThis section reviews thermodynamic processes and then summarizes the availablemethods for the calculation of q, w, DU, and DH in a process.

Thermodynamic ProcessesWhen a thermodynamic system undergoes a change of state, we say it has undergonea process. The path of a process consists of the series of thermodynamic states throughwhich the system passes on its way from the initial state to the final state. Two processesthat start at the same initial state and end at the same final state but go through differentpaths (for example, a and b in Fig. 2.3) are different processes. (The term “change ofstate” should not be confused with the term “phase change.” In thermodynamics, a sys-tem undergoes a change of state whenever one or more of the thermodynamic proper-ties defining the system’s state change their values.)In a cyclic process, the system’s final state is the same as the initial state. In a cyclicprocess, the change in each state function is zero: 0 5 DT 5 DP 5 DV 5 DU 5 DH, etc.However, q and w need not be zero for a cyclic process (recall Example 2.4 in Sec. 2.8).In a reversible process, the system is always infinitesimally close to equilibrium,and an infinitesimal change in conditions can restore both system and surroundings totheir initial states. To perform a process reversibly, one must have only infinitesimaldifferences in pressures and temperatures, so that work and heat will flow slowly. Anychanges in chemical composition must occur slowly and reversibly; moreover, theremust be no friction. We found that the work in a mechanically reversible process isgiven by dwrev 5 2P dV. In Chapter 3, we shall relate the heat dqrev in a reversibleprocess to state functions [see Eq. (3.20)].In an isothermal process, T is constant throughout the process. To achieve this, oneencloses the system in thermally conducting walls and places it in a large constant-temperature bath. For a perfect gas, U is a function of T only, so U is constant in anisothermal process; this is not necessarily true for systems other than perfect gases.In an adiabatic process, dq 5 0 and q 5 0. This can be achieved by surroundingthe system with adiabatic walls.In a constant-volume (isochoric) process, V is held constant throughout theprocess. Here, the system is enclosed in rigid walls. Provided the system is capable ofonly P-V work, the work w is zero in an isochoric process.In a constant-pressure (isobaric) process, P is held constant throughout theprocess. Experiments with solids and liquids are often performed with the systemopen to the atmosphere; here P is constant at the atmospheric pressure. To perform aconstant-P process in a gas, one encloses the gas in a cylinder with a movable piston,holds the external pressure on the piston fixed at the initial pressure of the gas, andslowly warms or cools the gas, thereby changing its volume and temperature at con-stant P. For a constant-pressure process, we found that DH 5 qP.Students are often confused in thermodynamics because they do not understandwhether a quantity refers to a property of a system in some particular thermodynamicstate or whether it refers to a process a system undergoes. For example, H is a prop-erty of a system and has a definite value once the system’s state is defined; in contrast,
DH ; H2 2 H1 is the change in enthalpy for a process in which the system goes from



state 1 to state 2. Each state of a thermodynamic system has a definite value of H. Eachchange of state has a definite value of DH.There are two kinds of quantities for a process. The value of a quantity such as
DH, which is the change in a state function, is independent of the path of the processand depends only on the final and the initial states: DH 5 H2 2 H1. The value of aquantity such as q or w, which are not changes in state functions, depends on the pathof the process and cannot be found from the final and initial states alone.We now review calculation of q, w, DU, and DH for various processes. In this re-view, we assume that the system is closed and that only P-V work is done.1. Reversible phase change at constant T and P. A phase change or phase tran-

sition is a process in which at least one new phase appears in a system without theoccurrence of a chemical reaction. Examples include the melting of ice to liquidwater, the transformation from orthorhombic solid sulfur to monoclinic solid sulfur(Sec. 7.4), and the freezing out of ice from an aqueous solution (Sec. 12.3). For now,we shall be concerned only with phase transitions involving pure substances.The heat q is found from the measured latent heat (Sec. 7.2) of the phasechange. The work w is found from w 5 2e21 P dV 5 2P DV, where DV is calcu-lated from the densities of the two phases. If one phase is a gas, we can use PV 5nRT to find its volume (unless the gas is at high density). DH for this constant-pressure process is found from DH 5 qP 5 q. Finally, DU is found from DU 5q 1 w. As an example, the measured (latent) heat of fusion (melting) of H2O at0°C and 1 atm is 333 J/g. For the fusion of 1 mol (18.0 g) of ice at this T and P,q 5 DH 5 6.01 kJ. Thermodynamics cannot furnish us with the values of thelatent heats of phase changes or with heat capacities. These quantities must bemeasured. (One can use statistical mechanics to calculate theoretically the heatcapacities of certain systems, as we shall later see.)2. Constant-pressure heating with no phase change. A constant-pressure processis mechanically reversible, sowhere DV is found from the densities at the initial and final temperatures or fromPV 5 nRT if the substance is a perfect gas. If the heating (or cooling) is reversible,then T of the system is well defined and CP 5 dqP/dT applies. Integration of thisequation and use of DH 5 qP give (2.79)Since P is constant, we didn’t bother to indicate that CP depends on P as well ason T. The dependence of CP and CV on pressure is rather weak. Unless one dealswith high pressures, a value of CP measured at 1 atm can be used at other pres-sures. DU is found from DU 5 q 1 w 5 qP 1 w.If the constant-pressure heating is irreversible (for example, if during theheating there is a finite temperature difference between system and surroundingsor if temperature gradients exist in the system), the relation DH 5 e21 CP dT stillapplies, so long as the initial and final states are equilibrium states. This is so be-cause H is a state function and the value of DH is independent of the path(process) used to connect states 1 and 2. If DH equals e21 CP dT for a reversiblepath between states 1 and 2, then DH must equal e21 CP dT for any irreversible pathbetween states 1 and 2. Also, in deriving DH 5 qP [Eq. (2.46)], we did not assumethe heating was reversible, only that P was constant. Thus, Eq. (2.79) holds forany constant-pressure temperature change in a closed system with P-V work only.¢H 5 qP 5 #
T2T1 CP1T 2 dT  const. Pw 5 wrev 5 2#
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Chapter 2The First Law of Thermodynamics64 Since H is a state function, we can use the integral in (2.79) to find DH forany process whose initial and final states have the same pressure, whether or notthe entire process occurs at constant pressure.3. Constant-volume heating with no phase change. Since V is constant, w 5 0.Integration of CV 5 dqV /dT and use of DU 5 q 1 w 5 qV give (2.80)As with (2.79), Eq. (2.80) holds whether or not the heating is reversible. DH isfound from DH 5 DU 1 D(PV ) 5 DU 1 V DP.4. Perfect-gas change of state. Since U and H of a perfect gas depend on T only, weintegrate dU 5 CV dT and dH 5 CP dT [(2.68) and (2.70)] to give (2.81)If CV(T ) or CP(T ) is known, we can use CP 2 CV 5 nR and integrate to find DUand DH. The equations of (2.81) apply to any perfect-gas change of state includ-ing irreversible changes and changes in which P and V change. The values of q and w depend on the path. If the process is reversible, then w 5 2e21 P dV 5

2nR e21 (T/V ) dV, and we can find w if we know how T varies as a function of V.Having found w, we use DU 5 q 1 w to find q.5. Reversible isothermal process in a perfect gas. Since U and H of the perfect gasare functions of T only, we have DU 5 0 and DH 5 0. Also, w 5 2e21 P dV 5

2nRT ln (V2/V1) [Eq. (2.74)] and q 5 2w, since q 1 w 5 DU 5 0.6. Reversible adiabatic process in a perfect gas. The process is adiabatic, so q 50. We find DU and DH from Eq. (2.81). The first law gives w 5 DU. If CV is es-sentially constant, the final state of the gas can be found from P1Vg1 5 P2Vg2[Eq. (2.77)], where g ; CP/CV.7. Adiabatic expansion of a perfect gas into vacuum. Here (Sec. 2.7) q 5 0, w 50, DU 5 q 1 w 5 0, and DH 5 DU 1 D(PV ) 5 DU 1 nR DT 5 0.Equations (2.79) and (2.80) tell us how a temperature change at constant P or atconstant V affects H and U. At this point, we are not yet able to find the effects of achange in P or V on H and U. This will be dealt with in Chapter 4.A word about units. Heat-capacity and latent-heat data are sometimes tabulated incalories, so q is sometimes calculated in calories. Pressures are often given in atmos-pheres, so P-V work is often calculated in cm3 atm. The SI unit for q, w, DU, and DHis the joule. Hence we frequently want to convert between joules, calories, and cm3 atm.We do this by using the values of R in (1.19) to (1.21). See Example 2.2 in Sec. 2.2.A useful strategy to find a quantity such as DU or q for a process is to write theexpression for the corresponding infinitesimal quantity and then integrate this expres-sion from the initial state to the final state. For example, to find DU in an ideal-gaschange of state, we write dU 5 CV dT and DU 5 e21 CV(T ) dT; to find q in a constant-pressure process, we write dqP 5 CP dT and qP 5 e21 CP dT. The infinitesimal changein a state function under the condition of constant P or T or V can often be found fromthe appropriate partial derivative. For example, if we want dU in a constant-volumeprocess, we use (­U/­T )V 5 CV to write dU 5 CV dT for V constant, and DU 5

e21 CV dT, where the integration is at constant V.When evaluating an integral from state 1 to 2, you can take quantities that are con-stant outside the integral, but anything that varies during the process must remain insidethe integral. Thus, for a constant-pressure process, e21 P dV 5 P e21 dV 5 P(V2 2 V1),and for an isothermal process, e21 (nRT/V ) dV 5 nRT e21 (1/V ) dV 5 nRT ln (V2/V1).¢U 5 #
T2T1 CV 1T 2 dT,  ¢H 5 #

T2T1 CP1T 2 dT  perf. gas¢U 5 #
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However, in evaluating e21 CP(T ) dT, we cannot take CP outside the integral, unless weknow that it is constant in the temperature range from T1 to T2.
EXAMPLE 2.6 Calculation of DHCP,m of a certain substance in the temperature range 250 to 500 K at 1 bar pres-sure is given by CP,m 5 b 1 kT, where b and k are certain known constants. If nmoles of this substance is heated from T1 to T2 at 1 bar (where T1 and T2 are inthe range 250 to 500 K), find the expression for DH.Since P is constant for the heating, we use (2.79) to get

ExerciseFind the DH expression when n moles of a substance with CP,m 5 r 1 sT1/2,where r and s are constants, is heated at constant pressure from T1 to T2.[Answer: nr(T2 2 T1) 1 ns(T 23/2 2 T 13/2).]
2.10 STATE FUNCTIONS AND LINE INTEGRALSWe now discuss ways to test whether some quantity is a state function. Let the systemgo from state 1 to state 2 by some process. We subdivide the process into infinitesimalsteps. Let db be some infinitesimal quantity associated with each infinitesimal step.For example, db might be the infinitesimal amount of heat that flows into the systemin an infinitesimal step (db 5 dq), or it might be the infinitesimal change in systempressure (db 5 dP), or it might be the infinitesimal heat flow divided by the system’stemperature (db 5 dq/T ), etc. To determine whether db is the differential of a statefunction, we consider the line integral Le21 db, where the L indicates that the integral’svalue depends in general on the process (path) used to go from state 1 to state 2.The line integral Le21 db equals the sum of the infinitesimal quantities db for theinfinitesimal steps into which we have divided the process. If b is a state function, thenthe sum of the infinitesimal changes in b is equal to the overall change Db ; b2 2 b1in b from the initial state to the final state. For example, if b is the temperature, thenLe21 dT 5 DT 5 T2 2 T1; similarly, Le21 dU 5 U2 2 U1. We have (2.82)Since b2 2 b1 is independent of the path used to go from state 1 to state 2 and dependsonly on the initial and final states 1 and 2, the value of the line integral Le21 db is inde-pendent of the path when b is a state function.Suppose b is not a state function. For example, let db 5 dq, the infinitesimal heatflowing into a system. The sum of the infinitesimal amounts of heat is equal tothe total heat q flowing into the system in the process of going from state 1 to state 2;we have Le21 dq 5 q; similarly, Le21 dw 5 w, where w is the work in the process. Wehave seen that q and w are not state functions but depend on the path from state 1 to#
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Chapter 2The First Law of Thermodynamics66 state 2. The values of the integrals Le21 dq and Le21 dw depend on the path from 1 to 2.In general, if b is not a state function, then Le21 db depends on the path. Differentialsof a state function, for example, dU, are called exact differentials in mathematics; thedifferentials dq and dw are inexact. Some texts use a special symbol to denote inexactdifferentials and write and (or Dq and Dw) instead of dq and dw.From (2.82), it follows that, if the value of the line integral db depends on thepath from state 1 to state 2, then b cannot be a state function.Conversely, if Le21 db has the same value for every possible path from state 1 tostate 2, b is a state function whose value for any state of the system can be defined asfollows. We pick a reference state r and assign it some value of b, which we denote bybr. The b value of an arbitrary state 2 is then defined by (2.83)Since, by hypothesis, the integral in (2.83) is independent of the path, the value of b2depends only on state 2; b2 5 b2(T2, P2), and b is thus a state function.If A is any state function, DA must be zero for any cyclic process. To indicate a cyclicprocess, one adds a circle to the line-integral symbol. If b is a state function, then (2.82)gives r db 5 0 for any cyclic process. For example, r dU 5 0. But note that r dq 5 qand r dw 5 w, where the heat q and work w are not necessarily zero for a cyclic process.We now show that, iffor every cyclic process, then the value of Le21 db is independent of the path and henceb is a state function. Figure 2.13 shows three processes connecting states 1 and 2.Processes I and II constitute a cycle. Hence the equation r db 5 0 gives (2.84)Likewise, processes I and III constitute a cycle, and (2.85)Subtraction of (2.85) from (2.84) gives (2.86)Since processes II and III are arbitrary processes connecting states 1 and 2, Eq. (2.86)shows that the line integral Le21 db has the same value for every process between states1 and 2. Therefore b must be a state function.
SummaryIf b is a state function, then Le21 db equals b2 2 b1 and is independent of the path fromstate 1 to state 2. If b is a state function, then r db 5 0.If the value of Le21 db is independent of the path from 1 to 2, then b is a state func-tion. If r db 5 0 for every cyclic process, then b is a state function.#
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Figure 2.13Three processes connecting states1 and 2.



2.11 THE MOLECULAR NATURE OF INTERNAL ENERGYInternal energy is energy at the molecular level. The molecular description of internalenergy is outside the scope of thermodynamics, but a qualitative understanding ofmolecular energies is helpful.Consider first a gas. The molecules are moving through space. A molecule has atranslational kinetic energy mv
2, where m and v are the mass and speed of the mole-cule. A translation is a motion in which every point of the body moves the same dis-tance in the same direction. We shall later use statistical mechanics to show that thetotal molecular translational kinetic energy Utr,m of one mole of a gas is directly pro-portional to the absolute temperature and is given by [Eq. (14.14)] Utr,m 5 RT, whereR is the gas constant.If each gas molecule has more than one atom, then the molecules undergo rota-tional and vibrational motions in addition to translation. A rotation is a motion inwhich the spatial orientation of the body changes, but the distances between all pointsin the body remain fixed and the center of mass of the body does not move (so thatthere is no translational motion). In Chapter 21, we shall use statistical mechanics toshow that except at very low temperatures the energy of molecular rotation Urot,min one mole of gas is RT for linear molecules and RT for nonlinear molecules[Eq. (21.112)]: Urot,lin,m 5 RT; Urot,nonlin,m 5 RT.Besides translational and rotational energies, the atoms in a molecule have vibra-tional energy. In a molecular vibration, the atoms oscillate about their equilibrium po-sitions in the molecule. A molecule has various characteristic ways of vibrating, eachway being called a vibrational normal mode (see, for example, Figs. 20.26 and 20.27).Quantum mechanics shows that the lowest possible vibrational energy is not zero butis equal to a certain quantity called the molecular zero-point vibrational energy(so-called because it is present even at absolute zero temperature). The vibrationalenergy contribution Uvib to the internal energy of a gas is a complicated function oftemperature [Eq. (21.113)]. For most light diatomic (two-atom) molecules (for ex-ample, H2, N2, HF, CO) at low and moderate temperatures (up to several hundredkelvins), the average molecular vibrational energy remains nearly fixed at the zero-point energy as the temperature increases. For polyatomic molecules (especiallythose with five or more atoms) and for heavy diatomic molecules (for example, I2)at room temperature, the molecules usually have significant amounts of vibrationalenergy above the zero-point energy.Figure 2.14 shows translational, rotational, and vibrational motions in CO2.In classical mechanics, energy has a continuous range of possible values. Quantummechanics (Chapter 17) shows that the possible energies of a molecule are restricted tocertain values called the energy levels. For example, the possible rotational-energy val-ues of a diatomic molecule are J(J 1 1)b [Eq. (17.81)], where b is a constant for a givenmolecule and J can have the values 0, 1, 2, etc. One finds (Sec. 21.5) that there is a dis-

tribution of molecules over the possible energy levels. For example, for CO gas at 298 K,0.93% of the molecules are in the J 5 0 level, 2.7% are in the J 5 1 level, 4.4% are inthe J 5 2 level, . . . , 3.1% are in the J 5 15 level, . . . . As the temperature increases,more molecules are found in higher energy levels, the average molecular energyincreases, and the thermodynamic internal energy and enthalpy increase (Fig. 5.11).Besides translational, rotational, and vibrational energies, a molecule possesses
electronic energy eel (epsilon el). We define this energy as eel ; eeq 2 e

q
, where

eeq is the energy of the molecule with the nuclei at rest (no translation, rotation, orvibration) at positions corresponding to the equilibrium molecular geometry, and e
qis the energy when all the nuclei and electrons are at rest at positions infinitely farapart from one another, so as to make the electrical interactions between all thecharged particles vanish. (The quantity e

q
is given by the special theory of relativity32 32 3212 Section 2.11The Molecular Nature of Internal Energy67O C OA translationO C OA rotationO C OA vibration

Figure 2.14Kinds of motions in the CO2molecule.



Chapter 2The First Law of Thermodynamics68 as the sum of the rest-mass energies mrestc2 for the electrons and nuclei.) For a sta-ble molecule, eeq is less than e
q

.The electronic energy eel can be changed by exciting a molecule to a higher elec-tronic energy level. Nearly all common molecules have a very large gap between thelowest electronic energy level and higher electronic levels, so at temperatures below,say, 5000 K, virtually all the molecules are in the lowest electronic level and the con-tribution of electronic energy to the internal energy remains constant as the tempera-ture increases (provided no chemical reactions occur).In a chemical reaction, the electronic energies of the product molecules differfrom those of the reactant molecules, and a chemical reaction changes the thermody-namic internal energy U primarily by changing the electronic energy. Although theother kinds of molecular energy generally also change in a reaction, the electronicenergy undergoes the greatest change.Besides translational, rotational, vibrational, and electronic energies, the gasmolecules possess energy due to attractions and repulsions between them (intermo-
lecular forces); intermolecular attractions cause gases to liquefy. The nature of inter-molecular forces will be discussed in Sec. 21.10. Here, we shall just quote some keyresults for forces between neutral molecules.The force between two molecules depends on the orientation of one molecule rel-ative to the other. For simplicity, one often ignores this orientation effect and uses aforce averaged over different orientations so that it is a function solely of the distancer between the centers of the interacting molecules. Figure 21.21a shows the typical be-havior of the potential energy v of interaction between two molecules as a function ofr; the quantity s (sigma) is the average diameter of the two molecules. Note that, whenthe intermolecular distance r is greater than 2 or 3 times the molecular diameter s,the intermolecular potential energy v is negligible. Intermolecular forces are gener-ally short-range. When r decreases below 3s, the potential energy decreases at first,indicating an attraction between the molecules, and then rapidly increases when rbecomes close to s, indicating a strong repulsion. Molecules initially attract eachother as they approach and then repel each other when they collide. The magnitudeof intermolecular attractions increases as the size of the molecules increases, and itincreases as the molecular dipole moments increase.The average distance between centers of molecules in a gas at 1 atm and 25°C isabout 35 Å (Prob. 2.55), where the angstrom (Å) is

; 0.1 nm (2.87)*Typical diameters of reasonably small molecules are 3 to 6 Å [see (15.26)]. The aver-age distance between gas molecules at 1 atm and 25°C is 6 to 12 times the moleculardiameter. Since intermolecular forces are negligible for separations beyond 3 times themolecular diameter, the intermolecular forces in a gas at 1 atm and 25°C are quitesmall and make very little contribution to the internal energy U. Of course, the spatialdistribution of gas molecules is not actually uniform, and even at 1 atm significantnumbers of molecules are quite close together, so intermolecular forces contributeslightly to U. At 40 atm and 25°C, the average distance between gas molecules is only10 Å, and intermolecular forces contribute substantially to U.Let Uintermol,m be the contribution of intermolecular interactions to Um. Uintermol,mdiffers for different gases, depending on the strength of the intermolecular forces.Problem 4.22 shows that, for a gas, Uintermol,m is typically 21 to 210 cal/mol at 1 atmand 25°C, and 240 to 2400 cal/mol at 40 atm and 25°C. (Uintermol is negative becauseintermolecular attractions lower the internal energy.) These numbers may be com-pared with the 25°C value Utr,m 5 RT 5 900 cal/mol.The fact that it is very hard to compress liquids and solids tells us that in con-densed phases the molecules are quite close to one another, with the average distance321 Å ; 1028 cm ; 10210 m12



between molecular centers being only slightly greater than the molecular diameter.Here, intermolecular forces contribute very substantially to U. In a liquid, the molec-ular translational, rotational, and vibrational energies are, to a good approximation(Sec. 21.11), the same as in a gas at the same temperature. We can therefore findUintermol in a liquid by measuring DU when the liquid vaporizes to a low-pressure gas.For common liquids, DUm for vaporization typically lies in the range 3 to 15 kcal/mol,indicating Uintermol,m values of 23000 to 215000 cal/mol, far greater in magnitudethan Uintermol,m in gases and Utr,m in room-temperature liquids and gases.Discussion of U in solids is complicated by the fact that there are several kinds ofsolids (see Sec. 23.3). Here, we consider only molecular solids, those in which thestructural units are individual molecules, these molecules being held together by in-termolecular forces. In solids, the molecules generally don’t undergo translation orrotation, and the translational and rotational energies found in gases and liquids areabsent. Vibrations within the individual molecules contribute to the internal energy. Inaddition, there is the contribution Uintermol of intermolecular interactions to the internalenergy. Intermolecular interactions produce a potential-energy well (similar to that inFig. 21.21a) within which each entire molecule as a unit undergoes a vibrationlikemotion that involves both kinetic and potential energies. Estimates of Uintermol,m fromheats of sublimation of solids to vapors indicate that for molecular crystals, Uintermol,mis in the same range as for liquids.For a gas or liquid, the molar internal energy iswhere Urest,m is the molar rest-mass energy of the electrons and nuclei, and is a con-stant. Provided no chemical reactions occur and the temperature is not extremely high,Uel,m is a constant. Uintermol,m is a function of T and P. Utr,m, Urot,m, and Uvib,m are func-tions of T.For a perfect gas, Uintermol,m 5 0. The use of Utr,m 5 RT, Urot,nonlin,m 5 RT, andUrot,lin,m 5 RT gives (2.88)For monatomic gases (for example, He, Ne, Ar), Urot,m 5 0 5 Uvib,m, so (2.89)The use of CV,m 5 (­Um/­T )V and CP,m 2 CV,m 5 R gives (2.90)provided T is not extremely high.For polyatomic gases, the translational contribution to CV,m is CV,tr,m R; therotational contribution is CV,rot,lin,m R, CV,rot,nonlin,m R (provided T is not extremelylow); CV,vib,m is a complicated function of T—for light diatomic molecules, CV,vib,m isnegligible at room temperature.Figure 2.15 plots CP,m at 1 atm versus T for several substances. Note that CP,m R5 cal/(mol K) for He gas between 50 and 1000 K. For H2O gas, CP,m starts at 4R8 cal/(mol K) at 373 K and increases as T increases. CP,m 4R means CV,m 3R. Thevalue 3R for this nonlinear molecule comes from CV,tr,m CV,rot,m R R. Theincrease above 3R as T increases is due to the contribution from CV,vib,m as excitedvibrational levels become populated.The high value of CP,m of liquid water compared with that for water vapor resultsfrom the contribution of intermolecular interactions to U. Usually CP for a liquid issubstantially greater than that for the corresponding vapor.The theory of heat capacities of solids will be discussed in Sec. 23.12. For allsolids, CP,m goes to zero as T goes to zero. 321
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Chapter 2The First Law of Thermodynamics70 The heat capacities CP,m 5 (­Hm/­T )P and CV,m 5 (­Um/­T )V are measures of howmuch energy must be added to a substance to produce a given temperature increase.The more ways (translation, rotation, vibration, intermolecular interactions) a sub-stance has of absorbing added energy, the greater will be its CP,m and CV,m values.
2.12 PROBLEM SOLVINGTrying to learn physical chemistry solely by reading a textbook without working prob-lems is about as effective as trying to improve your physique by reading a book onbody conditioning without doing the recommended physical exercises.If you don’t see how to work a problem, it often helps to carry out these steps:1. List all the relevant information that is given.2. List the quantities to be calculated.3. Ask yourself what equations, laws, or theorems connect what is known to what isunknown.4. Apply the relevant equations to calculate what is unknown from what is given.Although these steps are just common sense, they can be quite useful. The pointis that problem solving is an active process. Listing the given information and the un-known quantities and actively searching for relationships that connect them gets yourmind working on the problem, whereas simply reading the problem over and over maynot get you anywhere. In listing the given information, it is helpful to translate thewords in the problem into equations. For example, the phrase “adiabatic process”is translated into dq 5 0 and q 5 0; “isothermal process” is translated into dT 5 0 andT 5 constant.In steps 1 and 2, sketches of the system and the process may be helpful. In work-ing a problem in thermodynamics, one must have clearly in mind which portion of theuniverse is the system and which is the surroundings. The nature of the system shouldbe noted—whether it is a perfect gas (for which many special relations hold), anonideal gas, a liquid, a solid, a heterogeneous system, etc. Likewise, be aware ofthe kind of process involved—whether it is adiabatic, isothermal (T constant), isobaric(P constant), isochoric (V constant), reversible, etc.Figure 2.15CP,m at 1 atm versus T for severalsubstances; s, l, and g stand forsolid, liquid, and gas.



Of course, the main hurdle is step 3. Because of the many equations in physicalchemistry, it might seem a complex task to find the right equation to use in a problem.However, there are relatively few equations that are best committed to memory. Theseare usually the most fundamental equations, and usually they have fairly simple forms.For example, we have several equations for mechanically reversible P-V work in aclosed system: dwrev 5 2P dV gives the work in an infinitesimal reversible process;wrev 5 2e21 P dV gives the work in a finite reversible process; the work in a constant-pressure process is 2P DV; the work in an isothermal reversible process in a perfect gasis w 5 nRT ln (V1/V2). The only one of these equations worth memorizing is dwrev 5

2P dV, since the others can be quickly derived from it. Moreover, rederiving anequation from a fundamental equation reminds you of the conditions under whichthe equation is valid. Do not memorize unstarred equations. Readers who have investedtheir time mainly in achieving an understanding of the ideas and equations of physicalchemistry will do better than those who have spent their time memorizing formulas.Many of the errors students make in thermodynamics arise from using an equa-tion where it does not apply. To help prevent this, many of the equations have the con-ditions of validity stated next to them. Be sure the equations you are using areapplicable to the system and process involved. For example, students asked to calcu-late q in a reversible isothermal expansion of a perfect gas sometimes write “dq 5CP dT and since dT 5 0, we have dq 5 0 and q 5 0.” This conclusion is erroneous.Why? (See Prob. 2.63.)If you are baffled by a problem, the following suggestions may help you. (a) Askyourself what given information you have not yet used, and see how this informationmight help solve the problem. (b) Instead of working forward from the known quanti-ties to the unknown, try working backward from the unknown to the known. To do this,ask yourself what quantities you must know to find the unknown; then ask yourselfwhat you must know to find these quantities; etc. (c) Write down the definition of thedesired quantity. For example, if a density is wanted, write r ; m/V and ask yourselfhow to find m and V. If an enthalpy change is wanted, write H ; U 1 PV and
DH 5 DU 1 D(PV ) and see if you can find DU and D(PV ). (d) In analyzing a ther-modynamic process, ask yourself which state functions stay constant and whichchange. Then ask what conclusions can be drawn from the fact that certain state func-tions stay constant. For example, if V is constant in a process, then the P-V work mustbe zero. (e) Stop working on the problem and go on to something else. The solutionmethod might occur to you when you are not consciously thinking about the problem.A lot of mental activity occurs outside of our conscious awareness.When dealing with abstract quantities, it often helps to take specific numericalvalues. For example, suppose we want the relation between the rates of changednA/dt and dnB/dt for the chemical reaction A 1 2B → products, where nA and nBare the moles of A and B and t is time. Typically, students will say either that dnA/dt
5 2 dnB/dt or that dnA/dt 5 dnB/dt. (Before reading further, which do you think isright?) To help decide, suppose that in a tiny time interval dt 5 1023 s, 0.001 molof A reacts, so that dnA 5 20.001 mol. For the reaction A 1 2B → products, findthe corresponding value of dnB and then find dnA/dt and dnB/dt and compare them.In writing equations, a useful check is provided by the fact that each term in anequation must have the same dimensions. Thus, an equation that contains the expressionU 1 TV cannot be correct, because U has dimensions of energy 5 mass 3 length2/time2,whereas TV has dimensions of temperature 3 volume 5 temperature 3 length3. Fromthe definitions (1.25) and (1.29) of a derivative and a partial derivative, it follows that(­z/­x)y has the same dimensions as z/x. The definitions (1.52) and (1.59) of indefiniteand definite integrals show that e f dx and eba f dx have the same dimensions as fx.When writing equations, do not mix finite and infinitesimal changes in the sameequation. Thus, an equation that contains the expression P dV 1 V DP must be wrong12 Section 2.12Problem Solving71



Chapter 2The First Law of Thermodynamics72 because dV is an infinitesimal change and DP is a finite change. If one term in an equa-tion contains a single change in a state function, then another term that contains onlystate functions must contain a change. Thus, an equation cannot contain the expres-sion PV 1 V DP or the expression PV 1 V dP.As to step 4, performing the calculations, errors can be minimized by carryingunits of all quantities as part of the calculation. Make sure you are using a self-consistent set of units. Do not mix joules and kilojoules or joules and calories or joulesand cm3 atm in the same equation. If you are confused about what units to use, a strat-egy that avoids errors is to express all quantities in SI units. Inconsistent use of unitsis one of the most common student errors in physical chemistry.Express your answer with the proper units. A numerical answer with no units ismeaningless.In September 1999, the $125 million U.S. Mars Climate Orbiter spacecraft was lost. Itturned out that the engineers at Lockheed Martin sent data on the thrust of the spacecraft’sthrusters to scientists at the Jet Propulsion Laboratory in units of pounds-force, but the JPLscientists assumed the thrust was in units of newtons, and so their programming of rocketfirings to correct the trajectory produced an erroneous path that did not achieve orbit (NewYork Times, Oct. 1, 1999, p. A1). You don’t have to be a rocket scientist to mess up on units.On July 23, 1983, Air Canada Flight 143 ran out of fuel at 28,000 feet altitude and onlyhalfway to its destination. When the plane had been refueled in Ottawa, the plane’s on-boardfuel gauge was not working. Captain Robert Pearson knew that the plane needed 22,000 kgof fuel for the trip. The fuel-truck gauge read in liters, so Pearson asked the mechanic for thedensity of the fuel. He was told “1.77.” Pearson assumed this was 1.77 kg/L, and used thisfigure to calculate the volume of the fuel needed. The plane was a new Boeing 767, and inline with Canada’s conversion to metric units, its fuel load was measured in kilograms, incontrast to older planes, which used pounds. The mechanic was used to dealing with fuelloads in pounds (lb), so the figure of 1.77 he gave was actually 1.77 lb/L, which is 0.80 kg/L.Because of this miscommunication due to omission of units, Pearson requested a bit less thanhalf the fuel volume he needed and took off with 22,000 pounds of fuel instead of 22,000 kg.Although the plane was out of fuel, an emergency electric generator (the ram air tur-bine) that uses the air stream resulting from the plane’s speed to supply power to theplane’s hydraulic system gave Pearson some control of the plane. Also, emergency batterypower kept a few of the plane’s instrument-panel gauges working. Pearson was an experi-enced glider pilot and flew the plane for 17 minutes after it ran out of fuel. He headed foran abandoned Canadian Air Force base at Gimli. Approaching Gimli, he realized the planewas coming in too high and too fast for a safe landing, so he executed a maneuver usedwith gliders to lose speed and altitude; this maneuver had never been tried with a com-mercial jet, but it worked. When the plane reached the runway, the crew saw people on therunway—the abandoned runway was being used for car races. The crew used a backupsystem to drop the landing gear; the nose wheel got stuck partway down and collapsed onlanding; the scraping of the nose along the ground, together with Pearson’s application ofthe brakes, brought the plane to a stop before it reached the people on the runway. Therewere no fatalities and only a few minor injuries when the passengers evacuated the plane.Express the answer to the proper number of significant figures. Use a calcula-tor with keys for exponentials and logarithms for calculations. After the calculationis completed, it is a good idea to check the entire solution. If you are like most ofus, you are probably too lazy to do a complete check, but it takes only a few sec-onds to check that the sign and the magnitude of the answer are physically reason-able. Sign errors are especially common in thermodynamics, since most quantitiescan be either positive or negative.A solutions manual for problems in this textbook is available.



2.13 SUMMARYThe work done on a closed system when it undergoes a mechanically reversible infin-itesimal volume change is dwrev 5 2P dV.The line integral e21 P(T, V ) dV (which equals 2wrev) is defined to be the sum ofthe infinitesimal quantities P(T, V ) dV for the process from state 1 to state 2. In gen-eral, the value of a line integral depends on the path from state 1 to state 2.The heat transferred to a body of constant composition when it undergoes a tem-perature change dT at constant pressure is dqP 5 CP dT, where CP is the body’s heatcapacity at constant pressure.The first law of thermodynamics expresses the conservation of the total energy ofsystem plus surroundings. For a closed system at rest in the absence of fields, the totalenergy equals the internal energy U, and the change in U in a process is DU 5 q 1 w,where q and w are the heat flowing into and the work done on the system in theprocess. U is a state function, but q and w are not state functions. The internal energyU is energy that exists at the molecular level and includes molecular kinetic andpotential energies. The state function enthalpy H is defined by H ; U 1 PV. For a constant-pressureprocess, DH 5 qP in a closed system with P-V work only.The heat capacities at constant pressure and constant volume are CP 5 dqP/dT 5(­H/­T )P and CV 5 dqV/dT 5 (­U/­T )V.The Joule and Joule–Thomson experiments measure (­T/­V )U and (­T/­P)H;these derivatives are closely related to (­U/­V )T and (­H/­P)T.A perfect gas obeys PV 5 nRT and (­U/­V)T 5 0. The changes in thermodynamicproperties for a perfect gas are readily calculated for reversible isothermal and re-versible adiabatic processes.The methods used to calculate q, w, DU, and DH for various kinds of thermody-namic processes were summarized in Sec. 2.9.The line integral Le21 db is independent of the path from state 1 to state 2 if andonly if b is a state function. The line integral r db is zero for every cyclic process ifand only if b is a state function.The molecular interpretation of internal energy in terms of intramolecular andintermolecular energies was discussed in Sec. 2.11.Important kinds of calculations dealt with in this chapter include calculations ofq, w, DU, and DH for• Phase changes (for example, melting).• Heating a substance at constant pressure.• Heating at constant volume.• An isothermal reversible process in a perfect gas.• An adiabatic reversible process in a perfect gas with CV constant.• An adiabatic expansion of a perfect gas into vacuum.• A constant-pressure reversible process in a perfect gas.• A constant-volume reversible process in a perfect gas.
FURTHER READINGZemansky and Dittman, chaps. 3, 4, 5; Andrews (1971), chaps. 5, 6, 7; de Heer,chaps. 3, 9; Kestin, chap. 5; Reynolds and Perkins, chaps. 1, 2; Van Wylen andSonntag, chaps. 4, 5. Further Reading

73



74

Section 2.1
2.1 True or false? (a) The kinetic energy of a system of severalparticles equals the sum of the kinetic energies of the individ-ual particles. (b) The potential energy of a system of interactingparticles equals the sum of the potential energies of the indi-vidual particles.
2.2 Give the SI units of (a) energy; (b) work; (c) volume; (d) force; (e) speed; ( f ) mass.
2.3 Express each of these units as a combination of meters,kilograms, and seconds: (a) joule; (b) pascal; (c) liter; (d) new-ton; (e) watt.
2.4 An apple of mass 155 g falls from a tree and is caught by asmall boy. If the apple fell a distance of 10.0 m, find (a) the workdone on the apple by the earth’s gravitational field; (b) the kineticenergy of the apple just before it was caught; (c) the apple’sspeed just before it was caught.
2.5 An apple of mass 102 g is ground up into applesauce(with no added sugar) and spread evenly over an area of 1.00 m2on the earth’s surface. What is the pressure exerted by theapplesauce?
2.6 In the obsolete cgs system of mechanical units, length isexpressed in centimeters, mass in grams, and time in seconds.The cgs unit of force is the dyne and the cgs unit of energy isthe erg. Find the relation between dynes and newtons. Find therelation between ergs and joules.
Section 2.2
2.7 True or false? (a) The P-V work in a mechanically revers-ible process in a closed system always equals 2P DV. (b) Thesymbol w in this book means work done on the system by thesurroundings. (c) The infinitesimal P-V work in a mechanicallyreversible process in a closed system always equals 2P dV.(d ) The value of the work w in a reversible process in a closedsystem can be found if we know the initial state and the finalstate of the system. (e) The value of the integral e21 P dV is fixedonce the initial and final states 1 and 2 and the equation of stateP 5 P(T, V ) are known. ( f ) The equation wrev 5 2e21 P dVapplies only to constant-pressure processes. (g) e21 P dV 5

e21 nR dT for every reversible process in an ideal gas.
2.8 If P1 5 175 torr, V1 5 2.00 L, P2 5 122 torr, V2 5 5.00 L,find wrev for process (b) of Fig. 2.3 by (a) finding the area underthe curve; (b) using wrev 5 2e21 P dV.
2.9 A nonideal gas is heated slowly and expands reversiblyat a constant pressure of 275 torr from a volume of 385 cm3 to875 cm3. Find w in joules.
2.10 Using the P1, V1, P2, and V2 values of Example 2.2, findw for a reversible process that goes from state 1 to state 2 inFig. 2.3 via a straight line (a) by calculating the area underthe curve; (b) by using wrev 5 2e21 P dV. [Hint: The equation ofthe straight line that goes through points x1, y1 and x2, y2 is(y 2 y1)/(x 2 x1) 5 (y2 2 y1)/(x2 2 x1).] 2.11 It was stated in Sec. 2.2 that for a given change of state,wrev can have any positive or negative value. Consider a changeof state for which P2 5 P1 and V2 . V1. For this change of state,use a P-V diagram to (a) sketch a process with wrev , 0;(b) sketch a process with wrev . 0. Remember that neither Pnor V can be negative.

Section 2.3
2.12 Specific heats can be measured in a drop calorimeter;here, a heated sample is dropped into the calorimeter and thefinal temperature is measured. When 45.0 g of a certain metalat 70.0°C is added to 24.0 g of water (with cP 5 1.00 cal/g-°C)at 10.0°C in an insulated container, the final temperature is20.0°C. (a) Find the specific heat capacity of the metal. (b) Howmuch heat flowed from the metal to the water? Note: In (a), weare finding the average cP over the temperature range of theexperiment. To determine cP as a function of T, one repeats theexperiment many times, using different initial temperatures forthe metal.
Section 2.4
2.13 True or false? (a) For every process, DEsyst 5 2DEsurr.(b) For every cyclic process, the final state of the system is thesame as the initial state. (c) For every cyclic process, the finalstate of the surroundings is the same as the initial state of the sur-roundings. (d) For a closed system at rest with no fields present,the sum q 1 w has the same value for every process that goesfrom a given state 1 to a given state 2. (e) If systems A and Beach consist of pure liquid water at 1 bar pressure and if TA . TB, then the internal energy of system A must be greaterthan that of B.
2.14 For which of these systems is the system’s energy con-served in every process: (a) a closed system; (b) an open sys-tem; (c) an isolated system; (d) a system enclosed in adiabaticwalls?
2.15 One food calorie 5 103 cal 5 1 kcal. A typical adult in-gests 2200 kcal/day. (a) Show that an adult uses energy at aboutthe same rate as a 100-W lightbulb. (b) Calculate the total an-nual metabolic-energy expenditure of the 7 3 109 people onearth and compare it with the 5 3 1020 J per year energy usedby the world economy. (Neglect the fact that children use lessmetabolic energy than adults.)
2.16 A mole of water vapor initially at 200°C and 1 bar un-dergoes a cyclic process for which w 5 338 J. Find q for thisprocess.
2.17 William Thomson tells of running into Joule in 1847 atMont Blanc; Joule had with him his bride and a long ther-mometer with which he was going to “try for elevation of tem-perature in waterfalls.” The Horseshoe Falls at Niagara Falls is167 ft high and has a summer daytime flow rate of 2.55 3106 L/s. (a) Calculate the maximum possible temperature dif-ference between the water at the top and at the bottom of thefalls. (The maximum possible increase occurs if no energy isPROBLEMS



75transferred to such parts of the surroundings as the rocks at thebase of the falls.) (b) Calculate the maximum possible internal-energy increase of the 2.55 3 106 L that falls each second.(Before it reaches the falls, more than half the water of theNiagara River is diverted to a canal or underground tunnels foruse in hydroelectric power plants beyond the falls. These plantsgenerate 4.4 3 109 W. A power surge at one of these plants ledto the great blackout of November 9, 1965, which left 30 mil-lion people in the northeast United States and Ontario, Canada,without power for many hours.)
2.18 Imagine an isolated system divided into two parts, 1 and2, by a rigid, impermeable, thermally conducting wall. Let heatq1 flow into part 1. Use the first law to show that the heat flowfor part 2 must be q2 5 2q1.
2.19 Sometimes one sees the notation Dq and Dw for the heatflow into a system and the work done during a process. Explainwhy this notation is misleading.
2.20 Explain how liquid water can go from 25°C and 1 atm to30°C and 1 atm in a process for which q , 0.
2.21 The potential energy stored in a spring is kx2, where kis the force constant of the spring and x is the distance thespring is stretched from equilibrium. Suppose a spring withforce constant 125 N/m is stretched by 10.0 cm, placed in 112 gof water in an adiabatic container, and released. The mass of thespring is 20 g, and its specific heat capacity is 0.30 cal/(g °C).The initial temperature of the water and the spring is 18.000°C.The water’s specific heat capacity is 1.00 cal/(g °C). Find thefinal temperature of the water.
2.22 Consider a system enclosed in a vertical cylinder fittedwith a frictionless piston. The piston is a plate of negligiblemass, on which is glued a mass m whose cross-sectional area isthe same as that of the plate. Above the piston is a vacuum. (a) Use conservation of energy in the form dEsyst 1 dEsurr 5 0to show that for an adiabatic volume change dEsyst 5 2mg dh 2dKpist, where dh is the infinitesimal change in piston height, g isthe gravitational acceleration, and dKpist is the infinitesimalchange in kinetic energy of the mass m. (b) Show that the equa-tion in part (a) gives dwirrev 5 2Pext dV 2 dKpist for the irre-versible work done on the system, where Pext is the pressureexerted by the mass m on the piston plate.
2.23 Suppose the system of Prob. 2.22 is initially in equilib-rium with P 5 1.000 bar and V 5 2.00 dm3. The external massm is instantaneously reduced by 50% and held fixed thereafter,so that Pext remains at 0.500 bar during the expansion. After un-dergoing oscillations, the piston eventually comes to rest. Thefinal system volume is 6.00 dm3. Calculate wirrev.
Section 2.5
2.24 True or false? (a) The quantities H, U, PV, DH, andP DV all have the same dimensions. (b) DH is defined only fora constant-pressure process. (c) For a constant-volume processin a closed system, DH 5 DU.
2.25 Which of the following have the dimensions of energy:force, work, mass, heat, pressure, pressure times volume,12 enthalpy, change in enthalpy, internal energy, force timeslength?

2.26 The state function H used to be called “the heat content.”(a) Explain the origin of this name. (b) Why is this name mis-leading?
2.27 We showed DH 5 q for a constant-pressure process.Consider a process in which P is not constant throughout theentire process, but for which the final and initial pressures areequal. Need DH be equal to q here? (Hint: One way to answerthis is to consider a cyclic process.)
2.28 A certain system is surrounded by adiabatic walls. Thesystem consists of two parts, 1 and 2. Each part is closed, is heldat constant P, and is capable of P-V work only. Apply DH 5 qPto the entire system and to each part to show that q1 1 q2 5 0for heat flow between the parts.
Section 2.6
2.29 True or false? (a) CP is a state function. (b) CP is anextensive property.
2.30 (a) For CH4(g) at 2000 K and 1 bar, CP,m 5 94.4 J mol21K21. Find CP of 586 g of CH4(g) at 2000 K and 1 bar. (b) ForC(diamond), CP,m 5 6.115 J mol21 K21 at 25°C and 1 bar. Fora 10.0-carat diamond, find cP and CP. One carat 5 200 mg.
2.31 For H2O(l) at 100°C and 1 atm, r 5 0.958 g/cm3. Findthe specific volume of H2O(l) at 100°C and 1 atm.
Section 2.7
2.32 (a) What state function must remain constant in theJoule experiment? (b) What state function must remain con-stant in the Joule–Thomson experiment?
2.33 For air at temperatures near 25°C and pressures in therange 0 to 50 bar, the mJT values are all reasonably close to0.2°C/bar. Estimate the final temperature of the gas if 58 g ofair at 25°C and 50 bar undergoes a Joule–Thomson throttling toa final pressure of 1 bar.
2.34 Rossini and Frandsen found that, for air at 28°C andpressures in the range 1 to 40 atm, (­Um/­P)T 5 26.08 J mol21atm21. Calculate (­Um/­Vm)T for air at (a) 28°C and 1.00 atm;(b) 28°C and 2.00 atm. [Hint: Use (1.35).]
2.35 (a) Derive Eq. (2.65). (b) Show thatwhere k is defined by (1.44). [Hint: Start by taking (­/­P)T ofH 5 U 1 PV.]
2.36 Is mJ an intensive property? Is mJ an extensive property?
Section 2.8
2.37 For a fixed amount of a perfect gas, which of these state-ments must be true? (a) U and H each depend only on T. (b) CPis a constant. (c) P dV 5 nR dT for every infinitesimal process.(d) CP,m 2 CV,m 5 R. (e) dU 5 CV dT for a reversible process.
2.38 (a) Calculate q, w, DU, and DH for the reversibleisothermal expansion at 300 K of 2.00 mol of a perfect gas frommJT 5 21V>CP 2 1kCVmJ 2 kP 1 1 2



76500 cm3 to 1500 cm3. (b) What would DU and w be if theexpansion connects the same initial and final states as in (a) butis done by having the perfect gas expand into vacuum?
2.39 One mole of He gas with CV,m 5 3R/2 essentially inde-pendent of temperature expands reversibly from 24.6 L and300 K to 49.2 L. Calculate the final pressure and temperature ifthe expansion is (a) isothermal; (b) adiabatic. (c) Sketch thesetwo processes on a P-V diagram.
2.40 For N2(g), CP,m is nearly constant at 3.5R 5 29.1 J/(mol K)for temperatures in the range 100 to 400 K and low or moderatepressures. (a) Calculate q, w, DU, and DH for the reversibleadiabatic compression of 1.12 g of N2(g) from 400 torr and1000 cm3 to a final volume of 250 cm3. Assume perfect-gas be-havior. (b) Suppose we want to cool a sample of N2(g) at roomT and P (25°C and 101 kPa) to 100 K using a reversible adia-batic expansion. What should the final pressure be?
2.41 Find q, w, DU, and DH if 2.00 g of He(g) with CV,m 5 Ressentially independent of temperature undergoes (a) a re-versible constant-pressure expansion from 20.0 dm3 to40.0 dm3 at 0.800 bar; (b) a reversible heating with P goingfrom 0.600 bar to 0.900 bar while V remains fixed at 15.0 dm3.
Section 2.9
2.42 True or false? (a) A thermodynamic process is definedby the final state and the initial state. (b) DT 5 0 for everyisothermal process. (c) Every process that has DT 5 0 is anisothermal process. (d) DU 5 0 for a reversible phase change atconstant T and P. (e) q must be zero for an isothermal process.(f ) DT must be zero for an adiabatic process.
2.43 State whether each of the following is a property of athermodynamic system or refers to a noninfinitesimal process:(a) q; (b) U; (c) DH; (d) w; (e) CV; ( f ) mJT; (g) H.
2.44 Give the value of Cpr [Eq. (2.50)] for (a) the melting ofice at 0°C and 1 atm; (b) the freezing of water at 0°C and 1 atm;(c) the reversible isothermal expansion of a perfect gas; (d) thereversible adiabatic expansion of a perfect gas.
2.45 (This problem is especially instructive.) For each of thefollowing processes deduce whether each of the quantities q, w,
DU, and DH is positive, zero, or negative. (a) Reversible melt-ing of solid benzene at 1 atm and the normal melting point. (b) Reversible melting of ice at 1 atm and 0°C. (c) Reversibleadiabatic expansion of a perfect gas. (d) Reversible isothermalexpansion of a perfect gas. (e) Adiabatic expansion of a perfectgas into a vacuum (Joule experiment). ( f ) Joule–Thomson adi-abatic throttling of a perfect gas. (g) Reversible heating of aperfect gas at constant P. (h) Reversible cooling of a perfect gasat constant V.
2.46 For each process state whether each of q, w, and DU ispositive, zero, or negative. (a) Combustion of benzene in asealed container with rigid, adiabatic walls. (b) Combustion ofbenzene in a sealed container that is immersed in a water bathat 25°C and has rigid, thermally conducting walls. (c) Adiabaticexpansion of a nonideal gas into vacuum. 32 2.47 One mole of liquid water at 30°C is adiabatically com-pressed, P increasing from 1.00 to 10.00 atm. Since liquids andsolids are rather incompressible, it is a fairly good approxima-tion to take V as unchanged for this process. With this approx-imation, calculate q, DU, and DH for this process.

2.48 The molar heat capacity of oxygen at constant pressurefor temperatures in the range 300 to 400 K and for low or mod-erate pressures can be approximated as CP,m 5 a 1 bT, where a 5 6.15 cal mol21 K21 and b 5 0.00310 cal mol21 K22.(a) Calculate q, w, DU, and DH when 2.00 mol of O2 is re-versibly heated from 27°C to 127°C with P held fixed at1.00 atm. Assume perfect-gas behavior. (b) Calculate q, w, DU,and DH when 2.00 mol of O2 initially at 1.00 atm is reversiblyheated from 27°C to 127°C with V held fixed.
2.49 For this problem use 333.6 J/g and 2256.7 J/g as the la-tent heats of fusion and vaporization of water at the normalmelting and boiling points, cP 5 4.19 J g21 K21 for liquidwater, r5 0.917 g/cm3 for ice at 0°C and 1 atm, r5 1.000 g/cm3and 0.958 g/cm3 for water at 1 atm and 0°C and 100°C, respec-tively. (For liquid water, cP varies slightly with T. The  valuegiven is an average over the range 0°C to 100°C; see Fig. 2.15.)Calculate q, w, DU, and DH for (a) the melting of 1 mol of iceat 0°C and 1 atm; (b) the reversible constant-pressure heatingof 1 mol of liquid water from 0°C to 100°C at 1 atm; (c) thevaporization of 1 mol of water at 100°C and 1 atm.
2.50 Calculate DU and DH for each of the following changesin state of 2.50 mol of a perfect monatomic gas with CV,m 51.5R for all temperatures: (a) (1.50 atm, 400 K) → (3.00 atm,600 K); (b) (2.50 atm, 20.0 L) → (2.00 atm, 30.0 L); (c) (28.5 L, 400 K) → (42.0 L, 400 K).
2.51 Can q and w be calculated for the processes of Prob. 2.50?If the answer is yes, calculate them for each process.
2.52 For a certain perfect gas, CV,m 5 2.5R at all tempera-tures. Calculate q, w, DU, and DH when 2.00 mol of this gasundergoes each of the following processes: (a) a reversibleisobaric expansion from (1.00 atm, 20.0 dm3) to (1.00 atm,40.0 dm3); (b) a reversible isochoric change of state from(1.00 atm, 40.0 dm3) to (0.500 atm, 40.0 dm3); (c) a reversibleisothermal compression from (0.500 atm, 40.0 dm3) to(1.00 atm, 20.0 dm3). Sketch each process on the same P-V di-agram and calculate q, w, DU, and DH for a cycle that consistsof steps (a), (b), and (c).
Section 2.11
2.53 Classify each of the following as kinetic energy, poten-tial energy, or both: (a) translational energy; (b) rotationalenergy; (c) vibrational energy; (d) electronic energy.
2.54 Explain why CP,m of He gas at 10 K and 1 atm is largerthan R.
2.55 (a) Calculate the volume of 1 mole of ideal gas at 25°Cand 1 atm. Let the gas be in a cubic container. If the gas mol-ecules are distributed uniformly in space with equal spacingbetween adjacent molecules (of course, this really isn’t so), the52



77gas volume can be divided into Avogadro’s number of imagi-nary equal-sized cubes, each cube containing a molecule at itscenter. Calculate the edge length of each such cube. (b) What isthe distance between the centers of the uniformly distributedgas molecules at 25°C and 1 atm? (c) Answer (b) for a gas at25°C and 40 atm.
2.56 Estimate CV,m and CP,m at 300 K and 1 atm for (a) Ne(g);(b) CO(g).
2.57 Use Fig. 2.15 to decide whether Uintermol of liquid waterincreases or decreases as T increases.
General
2.58 (a) Use Rumford’s data given in Sec. 2.4 to estimate therelation between the “old” calorie (as defined in Sec. 2.3) andthe joule. Use 1 horsepower 5 746 W. (b) The same as(a) using Joule’s data given in Sec. 2.4.
2.59 Students often make significant-figure errors in takingreciprocals, in taking logs and antilogs, and in taking the dif-ference of nearly equal numbers. (a) For a temperature of1.8°C, calculate T21 (where T is the absolute temperature) tothe proper number of significant figures. (b) Find the commonlogs of the following numbers: 4.83 and 4.84; 4.83 3 1020 and4.84 3 1020. From the results, formulate a rule as to the propernumber of significant figures in the log of a number known ton significant figures. (c) Calculate (210.6 K)21 2 (211.5 K)21to the proper number of significant figures.
2.60 (a) A gas obeying the van der Waals equation of state(1.39) undergoes a reversible isothermal volume change fromV1 to V2. Obtain the expression for the work w. Check that yourresult reduces to (2.74) for a 5 0 5 b. (b) Use the result of (a) to find w for 0.500 mol of N2 expanding reversibly from0.400 L to 0.800 L at 300 K. See Sec. 8.4 for the a and b val-ues of N2. Compare the result with that found if N2 is assumedto be a perfect gas.
2.61 (a) If the temperature of a system decreases by 8.0°C,what is DT in kelvins? (b) A certain system has CP 5 5.00 J/°C.What is its CP in joules per kelvin?
2.62 Explain why Boyle’s law PV 5 constant for an ideal gasdoes not contradict the equation PV g 5 constant for a revers-ible adiabatic process in a perfect gas with CV constant.
2.63 Point out the error in the Sec. 2.12 reasoning that gave q 5 0 for a reversible isothermal process in a perfect gas.
2.64 A perfect gas with CV,m 5 3R independent of T expandsadiabatically into a vacuum, thereby doubling its volume. Twostudents present the following conflicting analyses. Genevieveuses Eq. (2.76) to write T2/T1 5 (V1/2V1)R/3R and T2 5 T1/21/3.Wendy writes DU 5 q 1 w 5 0 1 0 5 0 and DU 5 CV DT, so DT 5 0 and T2 5 T1. Which student is correct? What error didthe other student make?

2.65 A perfect gas undergoes an expansion process at con-stant pressure. Does its internal energy increase or decrease?Justify your answer.
2.66 Classify each of the following properties as intensive orextensive and give the SI units of each: (a) density; (b) U;(c) Hm; (d) CP; (e) cP; ( f ) CP,m; (g) P; (h) molar mass; (i) T.
2.67 A student attempting to remember a certain formulacomes up with CP 2 CV 5 TVam/kn, where m and n are certainintegers whose values the student has forgotten and where theremaining symbols have their usual meanings. Use dimensionalconsiderations to find m and n.
2.68 Because the heat capacities per unit volume of gases aresmall, accurate measurement of CP or CV for gases is not easy.Accurate measurement of the heat-capacity ratio g of a gas (forexample, by measurement of the speed of sound in the gas) iseasy. For gaseous CCl4 at 0.1 bar and 20°C, experiment gives 
g 5 1.13. Find CP,m and CV,m for CCl4(g) at 20°C and 1 bar.
2.69 Give the SI units of each of the following properties and state whether each is extensive or intensive. (a) (­V/­T )P;(b) V21(­V/­T )P; (c) (­Vm/­P)T; (d) (­U/­V )T; (e) (­2V/­T2)P.
2.70 State whether or not each of the following quantities isinfinitesimally small. (a) DV; (b) dwrev; (c) (­H/­T )P; (d) V dP.
2.71 True or false? (a) DH is a state function. (b) CV is inde-pendent of T for every perfect gas. (c) DU 5 q 1 w for everythermodynamic system at rest in the absence of external fields.(d) A process in which the final temperature equals the initialtemperature must be an isothermal process. (e) For a closed sys-tem at rest in the absence of external fields, U 5 q 1 w.( f ) U remains constant in every isothermal process in a closedsystem. (g) q 5 0 for every cyclic process. (h) DU 5 0 for everycyclic process. (i) DT 5 0 for every adiabatic process in a closedsystem. ( j) A thermodynamic process is specified by specifyingthe initial state and the final state of the system. (k) If a closedsystem at rest in the absence of external fields undergoes an adi-abatic process that has w 5 0, then the system’s temperaturemust remain constant. (l) P-V work is usually negligible forsolids and liquids. (m) If neither heat nor matter can enter orleave a system, that system must be isolated. (n) For a closedsystem with P-V work only, a constant-pressure process that hasq . 0 must have DT . 0. (o) e21 (1/V) dV 5 ln(V2 2 V1). (p) Thevalue of DU is independent of the path (process) used to go fromstate 1 to state 2. (q) For any process, DT 5 Dt, where T and t arethe Kelvin and Celsius temperatures. (r) If q 5 0 for a process,then the process must be isothermal. (s) For a reversible process,P must be constant. (t) eT2T1 (1/T ) dT 5 (ln T2)/(ln T1). (u) If the finaltemperature equals the initial temperature, the process must be anisothermal process. (v) eT2T1 T dT 5 (T2 2 T1)2.12


