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Physical chemistry is the study of the underlying physical principles that govern the
properties and behavior of chemical systems. 14 The Mole

A chemical system can be studied from either a microscopic or a macroscopic
viewpoint. The microscopic viewpoint is based on the concept of molecules. The 1.5  Ideal Gases
macroscopic viewpoint studies large-scale properties of matter without explicit use of
the molecule concept. The first half of this book uses mainly a macroscopic viewpoint;
the second half uses mainly a microscopic viewpoint. 17

We can divide physical chemistry into four areas: thermodynamics, quantum
chemistry, statistical mechanics, and kinetics (Fig. 1.1). Thermodynamics is a macro- 18  Integral Calculus
scopic science that studies the interrelationships of the various equilibrium properties
of a system and the changes in equilibrium properties in processes. Thermodynamics 1.9  Study Suggestions
is treated in Chapters 1 to 13.

Molecules and the electrons and nuclei that compose them do not obey classical
mechanics. Instead, their motions are governed by the laws of quantum mechanics
(Chapter 17). Application of quantum mechanics to atomic structure, molecular bond-
ing, and spectroscopy gives us quantum chemistry (Chapters 18 to 20).

The macroscopic science of thermodynamics is a consequence of what is hap-
pening at a molecular (microscopic) level. The molecular and macroscopic levels are
related to each other by the branch of science called statistical mechanics. Statistical
mechanics gives insight into why the laws of thermodynamics hold and allows calcu-
lation of macroscopic thermodynamic properties from molecular properties. We shall
study statistical mechanics in Chapters 14, 15, 21, 22, and 23.

Kinetics is the study of rate processes such as chemical reactions, diffusion, and
the flow of charge in an electrochemical cell. The theory of rate processes is not as
well developed as the theories of thermodynamics, quantum mechanics, and statistical
mechanics. Kinetics uses relevant portions of thermodynamics, quantum chemistry,
and statistical mechanics. Chapters 15, 16, and 22 deal with kinetics.

The principles of physical chemistry provide a framework for all branches of
chemistry.

1.6  Differential Calculus

Equations of State

1.10  Summary

. Statistical Quantum Flgure 1.1
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mechanics chemistry The four branches of physical
chemistry. Statistical mechanics is
the bridge from the microscopic
approach of quantum chemistry to
the macroscopic approach of
thermodynamics. Kinetics uses
Kinetics portions of the other three
branches.
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Organic chemists use kinetics studies to figure out the mechanisms of reactions,
use quantum-chemistry calculations to study the structures and stabilities of reaction
intermediates, use symmetry rules deduced from quantum chemistry to predict the
course of many reactions, and use nuclear-magnetic-resonance (NMR) and infrared
spectroscopy to help determine the structure of compounds. Inorganic chemists use
quantum chemistry and spectroscopy to study bonding. Analytical chemists use spec-
troscopy to analyze samples. Biochemists use kinetics to study rates of enzyme-
catalyzed reactions; use thermodynamics to study biological energy transformations,
osmosis, and membrane equilibrium, and to determine molecular weights of biological
molecules; use spectroscopy to study processes at the molecular level (for example, in-
tramolecular motions in proteins are studied using NMR); and use x-ray diffraction to
determine the structures of proteins and nucleic acids.

Environmental chemists use thermodynamics to find the equilibrium composition
of lakes and streams, use chemical kinetics to study the reactions of pollutants in the
atmosphere, and use physical kinetics to study the rate of dispersion of pollutants in
the environment.

Chemical engineers use thermodynamics to predict the equilibrium composition
of reaction mixtures, use kinetics to calculate how fast products will be formed, and
use principles of thermodynamic phase equilibria to design separation procedures
such as fractional distillation. Geochemists use thermodynamic phase diagrams to un-
derstand processes in the earth. Polymer chemists use thermodynamics, kinetics, and
statistical mechanics to investigate the kinetics of polymerization, the molecular
weights of polymers, the flow of polymer solutions, and the distribution of conforma-
tions of a polymer molecule.

Widespread recognition of physical chemistry as a discipline began in 1887 with
the founding of the journal Zeitschrift fiir Physikalische Chemie by Wilhelm Ostwald
with J. H. van’t Hoff as coeditor. Ostwald investigated chemical equilibrium, chemi-
cal kinetics, and solutions and wrote the first textbook of physical chemistry. He was
instrumental in drawing attention to Gibbs’ pioneering work in chemical thermody-
namics and was the first to nominate Einstein for a Nobel Prize. Surprisingly, Ostwald
argued against the atomic theory of matter and did not accept the reality of atoms
and molecules until 1908. Ostwald, van’t Hoff, Gibbs, and Arrhenius are generally
regarded as the founders of physical chemistry. (In Sinclair Lewis’s 1925 novel
Arrowsmith, the character Max Gottlieb, a medical school professor, proclaims that
“Physical chemistry is power, it is exactness, it is life.”)

In its early years, physical chemistry research was done mainly at the macroscopic
level. With the discovery of the laws of quantum mechanics in 1925-1926, emphasis
began to shift to the molecular level. (The Journal of Chemical Physics was founded
in 1933 in reaction to the refusal of the editors of the Journal of Physical Chemistry
to publish theoretical papers.) Nowadays, the power of physical chemistry has been
greatly increased by experimental techniques that study properties and processes at the
molecular level and by fast computers that (a) process and analyze data of spec-
troscopy and x-ray crystallography experiments, (b) accurately calculate properties of
molecules that are not too large, and (c¢) perform simulations of collections of hun-
dreds of molecules.

Nowadays, the prefix nano is widely used in such terms as nanoscience, nano-
technology, nanomaterials, nanoscale, etc. A nanoscale (or nanoscopic) system is one
with at least one dimension in the range 1 to 100 nm, where 1 nm = 10™° m. (Atomic
diameters are typically 0.1 to 0.3 nm.) A nanoscale system typically contains thou-
sands of atoms. The intensive properties of a nanoscale system commonly depend
on its size and differ substantially from those of a macroscopic system of the same
composition. For example, macroscopic solid gold is yellow, is a good electrical con-
ductor, melts at 1336 K, and is chemically unreactive; however, gold nanoparticles of



radius 2.5 nm melt at 930 K, and catalyze many reactions; gold nanoparticles of 100 nm
radius are purple-pink, of 20 nm radius are red, and of 1 nm radius are orange; gold
particles of 1 nm or smaller radius are electrical insulators. The term mesoscopic is
sometimes used to refer to systems larger than nanoscopic but smaller than macro-
scopic. Thus we have the progressively larger size levels: atomic — nanoscopic —
mesoscopic — macroscopic.

120 THERMODYNAMICS

Thermodynamics

We begin our study of physical chemistry with thermodynamics. Thermodynamics
(from the Greek words for “heat” and “power”) is the study of heat, work, energy, and
the changes they produce in the states of systems. In a broader sense, thermodynamics
studies the relationships between the macroscopic properties of a system. A key prop-
erty in thermodynamics is temperature, and thermodynamics is sometimes defined as
the study of the relation of temperature to the macroscopic properties of matter.

We shall be studying equilibrium thermodynamics, which deals with systems in
equilibrium. (Irreversible thermodynamics deals with nonequilibrium systems and
rate processes.) Equilibrium thermodynamics is a macroscopic science and is inde-
pendent of any theories of molecular structure. Strictly speaking, the word “molecule”
is not part of the vocabulary of thermodynamics. However, we won’t adopt a purist
attitude but will often use molecular concepts to help us understand thermodynamics.
Thermodynamics does not apply to systems that contain only a few molecules; a sys-
tem must contain a great many molecules for it to be treated thermodynamically. The
term “thermodynamics” in this book will always mean equilibrium thermodynamics.

Thermodynamic Systems

The macroscopic part of the universe under study in thermodynamics is called the
system. The parts of the universe that can interact with the system are called the
surroundings.

For example, to study the vapor pressure of water as a function of temperature, we
might put a sealed container of water (with any air evacuated) in a constant-temperature
bath and connect a manometer to the container to measure the pressure (Fig. 1.2). Here,
the system consists of the liquid water and the water vapor in the container, and the
surroundings are the constant-temperature bath and the mercury in the manometer.

Manometer

Constant-temperature bath

Figure 1.2

A thermodynamic system and its surroundings.
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Figure 1.3

Systems A and B are separated by
a wall W.

An open system is one where transfer of matter between system and surroundings
can occur. A closed system is one where no transfer of matter can occur between sys-
tem and surroundings. An isolated system is one that does not interact in any way with
its surroundings. An isolated system is obviously a closed system, but not every closed
system is isolated. For example, in Fig. 1.2, the system of liquid water plus water vapor
in the sealed container is closed (since no matter can enter or leave) but not isolated
(since it can be warmed or cooled by the surrounding bath and can be compressed or
expanded by the mercury). For an isolated system, neither matter nor energy can be
transferred between system and surroundings. For a closed system, energy but not
matter can be transferred between system and surroundings. For an open system, both
matter and energy can be transferred between system and surroundings.

A thermodynamic system is either open or closed and is either isolated or non-
isolated. Most commonly, we shall deal with closed systems.

Walls

A system may be separated from its surroundings by various kinds of walls. (In
Fig. 1.2, the system is separated from the bath by the container walls.) A wall can be
either rigid or nonrigid (movable). A wall may be permeable or impermeable,
where by “impermeable” we mean that it allows no matter to pass through it. Finally,
a wall may be adiabatic or nonadiabatic. In plain language, an adiabatic wall is one
that does not conduct heat at all, whereas a nonadiabatic wall does conduct heat.
However, we have not yet defined heat, and hence to have a logically correct devel-
opment of thermodynamics, adiabatic and nonadiabatic walls must be defined without
reference to heat. This is done as follows.

Suppose we have two separate systems A and B, each of whose properties are ob-
served to be constant with time. We then bring A and B into contact via a rigid, imper-
meable wall (Fig. 1.3). If, no matter what the initial values of the properties of A and B
are, we observe no change in the values of these properties (for example, pressures, vol-
umes) with time, then the wall separating A and B is said to be adiabatic. If we gener-
ally observe changes in the properties of A and B with time when they are brought in con-
tact via a rigid, impermeable wall, then this wall is called nonadiabatic or thermally
conducting. (As an aside, when two systems at different temperatures are brought in
contact through a thermally conducting wall, heat flows from the hotter to the colder sys-
tem, thereby changing the temperatures and other properties of the two systems; with an
adiabatic wall, any temperature difference is maintained. Since heat and temperature are
still undefined, these remarks are logically out of place, but they have been included to
clarify the definitions of adiabatic and thermally conducting walls.) An adiabatic wall is
an idealization, but it can be approximated, for example, by the double walls of a Dewar
flask or thermos bottle, which are separated by a near vacuum.

In Fig. 1.2, the container walls are impermeable (to keep the system closed) and
are thermally conducting (to allow the system’s temperature to be adjusted to that of
the surrounding bath). The container walls are essentially rigid, but if the interface
between the water vapor and the mercury in the manometer is considered to be a
“wall,” then this wall is movable. We shall often deal with a system separated from its
surroundings by a piston, which acts as a movable wall.

A system surrounded by a rigid, impermeable, adiabatic wall cannot interact with
the surroundings and is isolated.

Equilibrium

Equilibrium thermodynamics deals with systems in equilibrium. An isolated system
is in equilibrium when its macroscopic properties remain constant with time. A non-
isolated system is in equilibrium when the following two conditions hold: (a) The
system’s macroscopic properties remain constant with time; (b) removal of the system



from contact with its surroundings causes no change in the properties of the system.
If condition (a) holds but (») does not hold, the system is in a steady state. An exam-
ple of a steady state is a metal rod in contact at one end with a large body at 50°C and
in contact at the other end with a large body at 40°C. After enough time has elapsed,
the metal rod satisfies condition (a); a uniform temperature gradient is set up along the
rod. However, if we remove the rod from contact with its surroundings, the tempera-
tures of its parts change until the whole rod is at 45°C.

The equilibrium concept can be divided into the following three kinds of equilib-
rium. For mechanical equilibrium, no unbalanced forces act on or within the system;
hence the system undergoes no acceleration, and there is no turbulence within the sys-
tem. For material equilibrium, no net chemical reactions are occurring in the system,
nor is there any net transfer of matter from one part of the system to another or be-
tween the system and its surroundings; the concentrations of the chemical species in
the various parts of the system are constant in time. For thermal equilibrium between
a system and its surroundings, there must be no change in the properties of the system
or surroundings when they are separated by a thermally conducting wall. Likewise, we
can insert a thermally conducting wall between two parts of a system to test whether
the parts are in thermal equilibrium with each other. For thermodynamic equilibrium,
all three kinds of equilibrium must be present.

Thermodynamic Properties

What properties does thermodynamics use to characterize a system in equilibrium?
Clearly, the composition must be specified. This can be done by stating the mass of
each chemical species that is present in each phase. The volume V' is a property of the
system. The pressure P is another thermodynamic variable. Pressure is defined as the
magnitude of the perpendicular force per unit area exerted by the system on its sur-
roundings:

P=F/4 (1.1)*

where F is the magnitude of the perpendicular force exerted on a boundary wall of
area 4. The symbol = indicates a definition. An equation with a star after its number
should be memorized. Pressure is a scalar, not a vector. For a system in mechanical
equilibrium, the pressure throughout the system is uniform and equal to the pressure
of the surroundings. (We are ignoring the effect of the earth’s gravitational field, which
causes a slight increase in pressure as one goes from the top to the bottom of the sys-
tem.) If external electric or magnetic fields act on the system, the field strengths are
thermodynamic variables; we won’t consider systems with such fields. Later, further
thermodynamic properties (for example, temperature, internal energy, entropy) will be
defined.

An extensive thermodynamic property is one whose value is equal to the sum of
its values for the parts of the system. Thus, if we divide a system into parts, the mass
of the system is the sum of the masses of the parts; mass is an extensive property. So
is volume. An intensive thermodynamic property is one whose value does not depend
on the size of the system, provided the system remains of macroscopic size—recall
nanoscopic systems (Sec. 1.1). Density and pressure are examples of intensive prop-
erties. We can take a drop of water or a swimming pool full of water, and both sys-
tems will have the same density.

If each intensive macroscopic property is constant throughout a system, the sys-
tem is homogeneous. If a system is not homogeneous, it may consist of a number of
homogeneous parts. A homogeneous part of a system is called a phase. For example,
if the system consists of a crystal of AgBr in equilibrium with an aqueous solution
of AgBr, the system has two phases: the solid AgBr and the solution. A phase can con-
sist of several disconnected pieces. For example, in a system composed of several
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Figure 1.4

Densities at 25°C and 1 atm. The
scale is logarithmic.

AgBr crystals in equilibrium with an aqueous solution, all the crystals are part of the
same phase. Note that the definition of a phase does not mention solids, liquids, or
gases. A system can be entirely liquid (or entirely solid) and still have more than one
phase. For example, a system composed of the nearly immiscible liquids H,O and
CCl, has two phases. A system composed of the solids diamond and graphite has two
phases.

A system composed of two or more phases is heterogeneous.

The density p (tho) of a phase of mass m and volume V is

Figure 1.4 plots some densities at room temperature and pressure. The symbols s, /,
and g stand for solid, liquid, and gas.

Suppose that the value of every thermodynamic property in a certain thermody-
namic system equals the value of the corresponding property in a second system.
The systems are then said to be in the same thermodynamic state. The state of a
thermodynamic system is defined by specifying the values of its thermodynamic prop-
erties. However, it is not necessary to specify all the properties to define the state.
Specification of a certain minimum number of properties will fix the values of all other
properties. For example, suppose we take 8.66 g of pure H,O at 1 atm (atmosphere)
pressure and 24°C. It is found that in the absence of external fields all the remaining
properties (volume, heat capacity, index of refraction, etc.) are fixed. (This statement
ignores the possibility of surface effects, which are considered in Chapter 7.) Two
thermodynamic systems each consisting of 8.66 g of H,O at 24°C and 1 atm are in the
same thermodynamic state. Experiments show that, for a single-phase system con-
taining specified fixed amounts of nonreacting substances, specification of two addi-
tional thermodynamic properties is generally sufficient to determine the thermody-
namic state, provided external fields are absent and surface effects are negligible.

A thermodynamic system in a given equilibrium state has a particular value for
each thermodynamic property. These properties are therefore also called state
functions, since their values are functions of the system’s state. The value of a state
function depends only on the present state of a system and not on its past history. It
doesn’t matter whether we got the 8.66 g of water at 1 atm and 24°C by melting ice
and warming the water or by condensing steam and cooling the water.

131 TEMPERATURE

Suppose two systems separated by a movable wall are in mechanical equilibrium with
each other. Because we have mechanical equilibrium, no unbalanced forces act and
each system exerts an equal and opposite force on the separating wall. Therefore each
system exerts an equal pressure on this wall. Systems in mechanical equilibrium with
each other have the same pressure. What about systems that are in thermal equilibrium
(Sec. 1.2) with each other?

Just as systems in mechanical equilibrium have a common pressure, it seems
plausible that there is some thermodynamic property common to systems in thermal
equilibrium. This property is what we define as the temperature, symbolized by 6 (theta).
By definition, two systems in thermal equilibrium with each other have the same temper-
ature; two systems not in thermal equilibrium have different temperatures.

Although we have asserted the existence of temperature as a thermodynamic state
function that determines whether or not thermal equilibrium exists between systems,
we need experimental evidence that there really is such a state function. Suppose that
we find systems A and B to be in thermal equilibrium with each other when brought
in contact via a thermally conducting wall. Further suppose that we find systems B and
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C to be in thermal equilibrium with each other. By our definition of temperature, we Section 1.3
would assign the same temperature to A and B (6, = 6;) and the same temperature to Temperature
B and C (03 = 6). Therefore, systems A and C would have the same temperature

(04 = 0), and we would expect to find A and C in thermal equilibrium when they

are brought in contact via a thermally conducting wall. If A and C were not found to

be in thermal equilibrium with each other, then our definition of temperature would be

invalid. It is an experimental fact that:

Two systems that are each found to be in thermal equilibrium with a third sys-
tem will be found to be in thermal equilibrium with each other.

This generalization from experience is the zeroth law of thermodynamics. 1t is so called
because only after the first, second, and third laws of thermodynamics had been for-
mulated was it realized that the zeroth law is needed for the development of thermody-
namics. Moreover, a statement of the zeroth law logically precedes the other three. The
zeroth law allows us to assert the existence of temperature as a state function.

Having defined temperature, how do we measure it? Of course, you are familiar
with the process of putting a liquid-mercury thermometer in contact with a system,
waiting until the volume change of the mercury has ceased (indicating that thermal
equilibrium between the thermometer and the system has been reached), and reading
the thermometer scale. Let us analyze what is being done here.

To set up a temperature scale, we pick a reference system r, which we call the  V/om?
thermometer. For simplicity, we choose 7 to be homogeneous with a fixed composi- 1,003
tion and a fixed pressure. Furthermore, we require that the substance of the ther-
mometer must always expand when heated. This requirement ensures that at fixed
pressure the volume of the thermometer » will define the state of system » uniquely—  1.002
two states of 7 with different volumes at fixed pressure will not be in thermal equilib-
rium and must be assigned different temperatures. Liquid water is unsuitable for a
thermometer since when heated at 1 atm, it contracts at temperatures below 4°C and 1001
expands above 4°C (Fig. 1.5). Water at 1 atm and 3°C has the same volume as water \ /
at 1 atm and 5°C, so the volume of water cannot be used to measure temperature.

Liquid mercury always expands when heated, so let us choose a fixed amount of liquid
mercury at 1 atm pressure as our thermometer.

We now assign a different numerical value of the temperature ¢ to each different g ggg
volume V, of the thermometer ». The way we do this is arbitrary. The simplest -6 -5 0 5 10 15
approach is to take 6 as a linear function of V,. We therefore define the temperature to t/°C
be 6 = aV, + b, where V, is the volume of a fixed amount of liquid mercury at 1 atm
pressure and a and b are constants, with a being positive (so that states which are ex-
perienced physiologically as being hotter will have larger 6 values). Once a and b are ~ Volume of 1 g of water at 1 atm
specified, a measurement of the thermometer’s volume V, gives its temperature 6. versus temperature. Below 0°C,

The mercury for our thermometer is placed in a glass container that consists of a  1'¢ Water is supercooled (Sec. 7.4).
bulb connected to a narrow tube. Let the cross-sectional area of the tube be 4, and let
the mercury rise to a length / in the tube. The mercury volume equals the sum of the
mercury volumes in the bulb and the tube, so

O0=aV,+b=a(Vey + Al) + b = adl + (aVyy, + b) =cl +d (1.3)

Volume of 1 g
of liquid H O
at 1 atm

1.000

Figure 1.5

where c and d are constants defined as ¢ = a4 and d = aV, + b.

To fix ¢ and d, we define the temperature of equilibrium between pure ice and lig-
uid water saturated with dissolved air at 1 atm pressure as 0°C (for centigrade), and
we define the temperature of equilibrium between pure liquid water and water vapor
at 1 atm pressure (the normal boiling point of water) as 100°C. These points are called
the ice point and the steam point. Since our scale is linear with the length of the mer-
cury column, we mark off 100 equal intervals between 0°C and 100°C and extend the
marks above and below these temperatures.
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Having armed ourselves with a thermometer, we can now find the temperature of
any system B. To do so, we put system B in contact with the thermometer, wait until
thermal equilibrium is achieved, and then read the thermometer’s temperature from
the graduated scale. Since B is in thermal equilibrium with the thermometer, B’s tem-
perature equals that of the thermometer.

Note the arbitrary way we defined our scale. This scale depends on the expansion
properties of a particular substance, liquid mercury. If we had chosen ethanol instead
of mercury as the thermometric fluid, temperatures on the ethanol scale would differ
slightly from those on the mercury scale. Moreover, there is at this point no reason,
apart from simplicity, for choosing a linear relation between temperature and mercury
volume. We could just as well have chosen 6 to vary as aV’? + b. Temperature is a fun-
damental concept of thermodynamics, and one naturally feels that it should be formu-
lated less arbitrarily. Some of the arbitrariness will be removed in Sec. 1.5, where the
ideal-gas temperature scale is defined. Finally, in Sec. 3.6 we shall define the most
fundamental temperature scale, the thermodynamic scale. The mercury centigrade
scale defined in this section is not in current scientific use, but we shall use it until we
define a better scale in Sec. 1.5.

Let systems A and B have the same temperature (6, = 0y), and let systems B and
C have different temperatures (0 # 60.). Suppose we set up a second temperature
scale using a different fluid for our thermometer and assigning temperature values in
a different manner. Although the numerical values of the temperatures of systems A,
B, and C on the second scale will differ from those on the first temperature scale, it
follows from the zeroth law that on the second scale systems A and B will still have
the same temperature, and systems B and C will have different temperatures. Thus, al-
though numerical values on any temperature scale are arbitrary, the zeroth law assures
us that the temperature scale will fulfill its function of telling whether or not two sys-
tems are in thermal equilibrium.

Since virtually all physical properties change with temperature, properties other
than volume can be used to measure temperature. With a resistance thermometer, one
measures the electrical resistance of a metal wire. A thermistor (which is used in a dig-
ital fever thermometer) is based on the temperature-dependent electrical resistance of
a semiconducting metal oxide. A thermocouple involves the temperature dependence
of the electric potential difference between two different metals in contact (Fig. 13.4).
Very high temperatures can be measured with an optical pyrometer, which examines
the light emitted by a hot solid. The intensity and frequency distribution of this light
depend on the temperature (Fig. 17.15), and this allows the solid’s temperature to be
found (see Quinn, chap. 7; references with the author’s name italicized are listed in the
Bibliography).

Temperature is an abstract property that is not measured directly. Instead, we mea-
sure some other property (for example, volume, electrical resistance, emitted radia-
tion) whose value depends on temperature and (using the definition of the temperature
scale and calibration of the measured property to that scale) we deduce a temperature
value from the measured property.

Thermodynamics is a macroscopic science and does not explain the molecular
meaning of temperature. We shall see in Sec. 14.3 that increasing temperature corre-
sponds to increasing average molecular kinetic energy, provided the temperature scale
is chosen to give higher temperatures to hotter states.

The concept of temperature does not apply to a single atom, and the minimum-size
system for which a temperature can be assigned is not clear. A statistical-mechanical
calculation on a very simple model system indicated that temperature might not be a
meaningful concept for some nanoscopic systems [M. Hartmann, Contemporary
Physics, 47, 89 (2006); X. Wang et al., Am. J. Phys., 75,431 (2007)].



L4l THE MOLE

We now review the concept of the mole, which is used in chemical thermodynamics.

The ratio of the average mass of an atom of an element to the mass of some cho-
sen standard is called the atomic weight or relative atomic mass 4, of that element
(the r stands for “relative”). The standard used since 1961 is 15 times the mass of the
isotope '?C. The atomic weight of 1>C is thus exactly 12, by definition. The ratio of the
average mass of a molecule of a substance to {5 times the mass of a '2C atom is called
the molecular weight or relative molecular mass M, of that substance. The statement
that the molecular weight of H,O is 18.015 means that a water molecule has on the
average a mass that is 18.015/12 times the mass of a '2C atom. We say “on the aver-
age” to acknowledge the existence of naturally occurring isotopes of H and O. Since
atomic and molecular weights are relative masses, these “weights” are dimensionless
numbers. For an ionic compound, the mass of one formula unit replaces the mass of
one molecule in the definition of the molecular weight. Thus, we say that the molec-
ular weight of NaCl is 58.443, even though there are no individual NaCl molecules in
an NaCl crystal.

The number of '?C atoms in exactly 12 g of '2C is called Avogadro’s number.
Experiment (Sec. 18.2) gives 6.02 X 10?* as the value of Avogadro’s number.
Avogadro’s number of '?C atoms has a mass of 12 g, exactly. What is the mass of
Avogadro’s number of hydrogen atoms? The atomic weight of hydrogen is 1.0079, so
each H atom has a mass 1.0079/12 times the mass of a '2C atom. Since we have equal
numbers of H and '2C atoms, the total mass of hydrogen is 1.0079/12 times the total
mass of the '?C atoms, which is (1.0079/12) (12 g) = 1.0079 g; this mass in grams is
numerically equal to the atomic weight of hydrogen. The same reasoning shows that
Avogadro’s number of atoms of any element has a mass of 4, grams, where 4, is the
atomic weight of the element. Similarly, Avogadro’s number of molecules of a sub-
stance whose molecular weight is M, will have a mass of M, grams.

The average mass of an atom or molecule is called the atomic mass or the mole-
cular mass. Molecular masses are commonly expressed in units of atomic mass units
(amu), where 1 amu is one-twelfth the mass of a '2C atom. With this definition, the
atomic mass of C is 12.011 amu and the molecular mass of H,O is 18.015 amu. Since
12 g of '2C contains 6.02 X 10?* atoms, the mass of a '2C atom is (12 g)/(6.02 X 10%3)
and 1 amu = (1 g)/(6.02 X 10%*) = 1.66 X 10~2* g. The quantity 1 amu is called 1 dal-
ton by biochemists, who express molecular masses in units of daltons.

A mole of some substance is defined as an amount of that substance which con-
tains Avogadro’s number of elementary entities. For example, a mole of hydrogen
atoms contains 6.02 X 1023 H atoms; a mole of water molecules contains 6.02 X 103
H,0O molecules. We showed earlier in this section that, if M, ; is the molecular weight
of species i, then the mass of 1 mole of species i equals M, ; grams. The mass per
mole of a pure substance is called its molar mass M. For example, for H,O, M =
18.015 g/mole. The molar mass of substance i is

= (1.4)*

where m; is the mass of substance 7 in a sample and #; is the number of moles of 7 in
the sample. The molar mass M; and the molecular weight M, ; of i are related by M; =
M, ; X 1 g/mole, where M, ; is a dimensionless number.

After Eq. (1.4), n, was called “the number of moles” of species i. Strictly speak-
ing, this is incorrect. In the officially recommended SI units (Sec. 2.1), the amount of
substance (also called the chemical amount) is taken as one of the fundamental
physical quantities (along with mass, length, time, etc.), and the unit of this physical
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quantity is the mole, abbreviated mol. Just as the SI unit of mass is the kilogram, the
SI unit of amount of substance is the mole. Just as the symbol m, stands for the mass
of substance i, the symbol #; stands for the amount of substance i. The quantity m;
is not a pure number but is a number times a unit of mass; for example, m, might be
4.18 kg (4.18 kilograms). Likewise, #, is not a pure number but is a number times a
unit of amount of substance; for example, #;, might be 1.26 mol (1.26 moles). Thus the
correct statement is that #, is the amount of substance i. The number of moles of i is a
pure number and equals #,/mol, since #n, has a factor of 1 mol included in itself.

Since Avogadro’s number is the number of molecules in one mole, the number of
molecules N, of species 7 in a system is

N; = (n;/mol) « (Avogadro’s number)

where n;/mol is the number of moles of species i in the system. The quantity
(Avogadro’s number)/mol is called the Avogadro constant N,. We have

N, =mN,  where N, = 6.02 X 10 mol ™! (1.5)*

Avogadro’s number is a pure number, whereas the Avogadro constant N, has units of
mole™!.

Equation (1.5) applies to any collection of elementary entities, whether they are
atoms, molecules, ions, radicals, electrons, photons, etc. Written in the form n, = N,/N,,
Eq. (1.5) gives the definition of the amount of substance n; of species i. In this equa-
tion, N, is the number of elementary entities of species i.

If a system contains n; moles of chemical species i and if n,, is the total number

of moles of all species present, then the mole fraction x; of species i is

X = /Ny a.6)*
The sum of the mole fractions of all species equals 1;x, + x, + - - - = n,/n + ny/n, +
o=ty o )iy = ng/ng =1

L5 IDEAL GASES

The laws of thermodynamics are general and do not refer to the specific nature of
the system under study. Before studying these laws, we shall describe the proper-
ties of a particular kind of system, namely, an ideal gas. We shall then be able to il-
lustrate the application of thermodynamic laws to an ideal-gas system. Ideal gases
also provide the basis for a more fundamental temperature scale than the liquid-
mercury scale of Sec. 1.3.

Boyle’s Law

Boyle investigated the relation between the pressure and volume of gases in 1662 and
found that, for a fixed amount of gas kept at a fixed temperature, P and V are inversely
proportional:

PV=k constant 6, m (1.7)

where £ is a constant and m is the gas mass. Careful investigation shows that Boyle’s
law holds only approximately for real gases, with deviations from the law approach-
ing zero in the limit of zero pressure. Figure 1.6a shows some observed P-versus-V
curves for 28 g of N, at two temperatures. Figure 1.6b shows plots of PV versus P for
28 g of N,. Note the near constancy of PJ at low pressures (below 10 atm) and the sig-
nificant deviations from Boyle’s law at high pressures.

Note how the axes in Fig. 1.6 are labeled. The quantity P equals a pure number
times a unit; for example, P might be 4.0 atm = 4.0 X 1 atm. Therefore, P/atm (where
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Plots of (a) P versus V and (b) PV versus P for 1 mole of N, gas at constant temperature.

the slash means “divided by”) is a pure number, and the scales on the axes are marked
with pure numbers. If P = 4.0 atm, then P/atm = 4.0. (If a column in a table is labeled
103P/atm, then an entry of 5.65 in this column would mean that 10°P/atm = 5.65 and
simple algebra gives P = 5.65 X 1072 atm.)

Boyle’s law is understandable from the picture of a gas as consisting of a huge
number of molecules moving essentially independently of one another. The pressure
exerted by the gas is due to the impacts of the molecules on the walls. A decrease in
volume causes the molecules to hit the walls more often, thereby increasing the pres-
sure. We shall derive Boyle’s law from the molecular picture in Chapter 14, starting
from a model of the gas as composed of noninteracting point particles. In actuality, the
molecules of a gas exert forces on one another, so Boyle’s law does not hold exactly.
In the limit of zero density (reached as the pressure goes to zero or as the temperature
goes to infinity), the gas molecules are infinitely far apart from one another, forces
between molecules become zero, and Boyle’s law is obeyed exactly. We say the gas
becomes ideal in the zero-density limit.

Pressure and Volume Units

From the definition P = F/A [Eq. (1.1)], pressure has dimensions of force divided by
area. In the SI system (Sec. 2.1), its units are newtons per square meter (N/m?), also
called pascals (Pa):

1Pa=1N/m (1.8)*

Because 1 m? is a large area, the pascal is an inconveniently small unit of pressure, and
its multiples the kilopascal (kPa) and megapascal (MPa) are often used: 1 kPa = 103
Pa and 1 MPa = 10° Pa.

Chemists customarily use other units. One torr (or 1 mmHg) is the pressure ex-
erted at 0°C by a column of mercury one millimeter high when the gravitational ac-
celeration has the standard value g = 980.665 cm/s>. The downward force exerted by
the mercury equals its mass m times g. Thus a mercury column of height 4, mass m,
cross-sectional area 4, volume V, and density p exerts a pressure P given by

P=F/4A=mg/A = pVg/A = pAhg/4A = pgh (1.9)

1
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Figure 1.8

Plots of volume versus centigrade
temperature for 1 mole of N, gas
at constant pressure.

The density of mercury at 0°C and 1 atm is 13.5951 g/cm?. Converting this density to
kg/m? and using (1.9) with 4 = 1 mm, we have

kg \/10cm \’

<13.5951 g3>< = )( Cm) (9.80665 m/s?)(10~° m)
cm 10° g I m

ltorr = 133322 kg m™' 52 = 133.322 N/m’ = 133.322 Pa

1 torr

since I N = 1 kg ms~2[Eq. (2.7)]. One atmosphere (atm) is defined as exactly 760 torr:
1 atm = 760 torr = 1.01325 X 10° Pa (1.10)
Another widely used pressure unit is the bar:
1 bar = 10° Pa = 0.986923 atm = 750.062 torr (1.11)
The bar is slightly less than 1 atm. The approximation
1 bar = 750 torr (1.12)*

will usually be accurate enough for our purposes. See Fig. 1.7.

Common units of volume are cubic centimeters (cm?), cubic decimeters (dm?),
cubic meters (m?), and liters (L or 1). The liter is defined as exactly 1000 cm?®. One
liter equals 10° cm® = 103(1072 m)®> = 103 m?® = (107! m)? = 1 dm?, where one
decimeter (dm) equals 0.1 m.

1 liter = 1 dm® = 1000 cm’ (1.13)*

Charles’ Law

Charles (1787) and Gay-Lussac (1802) measured the thermal expansion of gases and
found a linear increase in volume with temperature (measured on the mercury centi-
grade scale) at constant pressure and fixed amount of gas:

V=a, + a0 const. P, m (1.14)

where a, and a, are constants. For example, Fig. 1.8 shows the observed relation be-
tween V and 6 for 28 g of N, at a few pressures. Note the near linearity of the curves,
which are at low pressures. The content of Charles’ law is simply that the thermal ex-
pansions of gases and of liquid mercury are quite similar. The molecular explanation
for Charles’ law lies in the fact that an increase in temperature means the molecules
are moving faster and hitting the walls harder and more often. Therefore, the volume
must increase if the pressure is to remain constant.

The Ideal-Gas Absolute Temperature Scale

Charles’ law (1.14) is obeyed most accurately in the limit of zero pressure; but even
in this limit, gases still show small deviations from Eq. (1.14). These deviations are
due to small differences between the thermal-expansion behavior of ideal gases and

ViL
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that of liquid mercury, which is the basis for the 6 temperature scale. However, in the
zero-pressure limit, the deviations from Charles’ law are the same for different gases.
In the limit of zero pressure, all gases show the same temperature-versus-volume be-
havior at constant pressure.

Extrapolation of the N, low-pressure V-versus-0 curves in Fig. 1.8 to low temper-
atures shows that they all intersect the 6 axis at the same point, approximately —273°
on the mercury centigrade scale. Moreover, extrapolation of such curves for any gas,
not just N,, shows they intersect the 6 axis at —273°. At this temperature, any ideal
gas is predicted to have zero volume. (Of course, the gas will liquefy before this tem-
perature is reached, and Charles’ law will no longer be obeyed.)

As noted, all gases have the same temperature-versus-volume behavior in the
zero-pressure limit. Therefore, to get a temperature scale that is independent of the
properties of any one substance, we shall define an ideal-gas temperature scale 7 by
the requirement that the 7-versus-J behavior of a gas be exactly linear (that is, obey
Charles’ law exactly) in the limit of zero pressure. Moreover, because it seems likely
that the temperature at which an ideal gas is predicted to have zero volume might well
have fundamental significance, we shall take the zero of our ideal-gas temperature
scale to coincide with the zero-volume temperature. We therefore define the absolute
ideal-gas temperature 7 by the requirement that the relation 7 = BV shall hold
exactly in the zero-pressure limit, where B is a constant for a fixed amount of gas at
constant P, and where V is the gas volume. Any gas can be used.

To complete the definition, we specify B by picking a fixed reference point and
assigning its temperature. In 1954 it was internationally agreed to use the triple point
(tr) of water as the reference point and to define the absolute temperature 7}, at this
triple point as exactly 273.16 K. The K stands for the unit of absolute temperature, the
kelvin, formerly called the degree Kelvin (°K). (The water triple point is the temper-
ature at which pure liquid water, ice, and water vapor are in mutual equilibrium.) At
the water triple point, we have 273.16 K = T,. = BV, and B = (273.16 K)/V,,, where
V.. is the gas volume at 7},. Therefore the equation 7' = BV defining the absolute ideal-
gas temperature scale becomes

v
T'=(273.16K) lim —  const. P, m (1.15)

P—0 Vi

How is the limit P — 0 taken in (1.15)? One takes a fixed quantity of gas at some
pressure P, say 200 torr. This gas is put in thermal equilibrium with the body whose tem-
perature 7 is to be measured, keeping P constant at 200 torr and measuring the volume
J of the gas. The gas thermometer is then put in thermal equilibrium with a water triple-
point cell at 273.16 K, keeping P of the gas at 200 torr and measuring V.. The ratio V/V,,
is then calculated for P = 200 torr. Next, the gas pressure is reduced to, say, 150 torr,
and the gas volume at this pressure is measured at temperature 7" and at 273.16 K; this
gives the ratio V/V, at P = 150 torr. The operations are repeated at successively lower
pressures to give further ratios V/V,.. These ratios are then plotted against P, and the
curve is extrapolated to P = 0 to give the limit of V/V,, (see Fig. 1.9). Multiplication of
this limit by 273.16 K then gives the ideal-gas absolute temperature 7" of the body. In
practice, a constant-volume gas thermometer is easier to use than a constant-pressure
one; here, V/V,, at constant P in (1.15) is replaced by P/P,, at constant V.

Accurate measurement of a body’s temperature with an ideal-gas thermometer is
tedious, and this thermometer is not useful for day-to-day laboratory work. What is
done instead is to use an ideal-gas thermometer to determine accurate values for sev-
eral fixed points that cover a wide temperature range. The fixed points are triple points
and normal melting points of certain pure substances (for example, O,, Ar, Zn, Ag). The
specified values for these fixed points, together with specified interpolation formulas
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that use platinum resistance thermometers for temperatures between the fixed points,
constitute the International Temperature Scale of 1990 (ITS-90). The ITS-90 scale is
designed to reproduce the ideal-gas absolute scale within experimental error and is used
to calibrate laboratory thermometers. Details of ITS-90 are given in B. W. Mangum,
J. Res. Natl. Inst. Stand. Technol., 95, 69 (1990); Quinn, sec. 2-12 and appendix II.

Since the ideal-gas temperature scale is independent of the properties of any one
substance, it is superior to the mercury centigrade scale defined in Sec. 1.3. However,
the ideal-gas scale still depends on the limiting properties of gases. The thermody-
namic temperature scale, defined in Sec. 3.6, is independent of the properties of any
particular kind of matter. For now we shall use the ideal-gas scale.

The present definition of the Celsius (centigrade) scale ¢ is in terms of the ideal-
gas absolute temperature scale 7'as follows:

{/°C = T/K — 273.15 (1.16)*

For the water triple-point Celsius temperature ¢, we have ¢,/°C = (273.16 K)/K — 273.15
= 0.01, so ¢, is exactly 0.01°C. On the present Celsius and Kelvin scales, the ice and
steam points (Sec. 1.3) are not fixed but are determined by experiment, and there is no
guarantee that these points will be at 0°C and 100°C. However, the value 273.16 K for the
water triple point and the number 273.15 in (1.16) were chosen to give good agreement
with the old centigrade scale, so we expect the ice and steam points to be little changed
from their old values. Experiment gives 0.00009°C for the ice point and for the steam
point gives 99.984°C on the thermodynamic scale and 99.974°C on the I'TS-90 scale.

Since the absolute ideal-gas temperature scale is based on the properties of a gen-
eral class of substances (gases in the zero-pressure limit, where intermolecular forces
vanish), one might suspect that this scale has fundamental significance. This is true,
and we shall see in Egs. (14.14) and (14.15) that the average kinetic energy of motion
of molecules through space in a gas is directly proportional to the absolute tempera-
ture 7. Moreover, the absolute temperature 7 appears in a simple way in the law that
governs the distribution of molecules among energy levels; see Eq. (21.69), the
Boltzmann distribution law.

From Eq. (1.15), at constant P and m we have V/T = V,/T,. This equation holds
exactly only in the limit of zero pressure but is pretty accurate provided the pressure
is not too high. Since V| /T, is a constant for a fixed amount of gas at fixed P, we have

V/T=K  const. P, m

where K is a constant. This is Charles’ law. However, logically speaking, this equation
is not a law of nature but simply embodies the definition of the ideal-gas absolute tem-
perature scale 7. After defining the thermodynamic temperature scale, we can once
again view V/T = K as a law of nature.

The General Ideal-Gas Equation

Boyle’s and Charles’ laws apply when 7"and m or P and m are held fixed. Now con-
sider a more general change in state of an ideal gas, in which the pressure, volume, and
temperature all change, going from P, V,, T; to P,, V,, T,, with m unchanged. To apply
Boyle’s and Charles’ laws, we imagine this process to be carried out in two steps:

a b
PV T, =5 BV, T, —5 P Vi T

Since T and m are constant in step (a), Boyle’s law applies and PV, = k = P,V
hence V, = P, V,/P,. Use of Charles’ law for step (b) gives V,/T; = V,/T,. Substitution
of V, = P,V|/P, into this equation gives P, V,/P,T; = V,/T,, and

P VT, = BV, T, const. m, ideal gas (1.17)



What happens if we vary the mass m of ideal gas while keeping P and T constant?
Volume is an extensive quantity, so V is directly proportional to m for any one-phase,
one-component system at constant 7 and P. Thus V/m is constant at constant 7" and P,
Combining this fact with the constancy of PV/T at constant m, we readily find (Prob.
1.24) that PV/mT remains constant for any variation in P, V, T, and m of any pure ideal
gas: PV/mT = ¢, where c is a constant. There is no reason for ¢ to be the same for dif-
ferent ideal gases, and in fact it is not. To obtain a form of the ideal-gas law that has
the same constant for every ideal gas, we need another experimental observation.

In 1808 Gay-Lussac noted that the ratios of volumes of gases that react with one
another involve small whole numbers when these volumes are measured at the same
temperature and pressure. For example, one finds that two liters of hydrogen gas react
with one liter of oxygen gas to form water. This reaction is 2H, + O, — 2H,0, so the
number of hydrogen molecules reacting is twice the number of oxygen molecules re-
acting. The two liters of hydrogen must then contain twice the number of molecules
as does the one liter of oxygen, and therefore one liter of hydrogen will have the same
number of molecules as one liter of oxygen at the same temperature and pressure. The
same result is obtained for other gas-phase reactions. We conclude that equal volumes
of different gases at the same temperature and pressure contain equal numbers of mol-
ecules. This idea was first recognized by Avogadro in 1811. (Gay-Lussac’s law of
combining volumes and Avogadro’s hypothesis are strictly true for real gases only in
the limit P — 0.) Since the number of molecules is proportional to the number of
moles, Avogadro’s hypothesis states that equal volumes of different gases at the same
T and P have equal numbers of moles.

Since the mass of a pure gas is proportional to the number of moles, the ideal-gas
law PV/mT = c can be rewritten as PV/nT = R or n = PV/RT, where n is the number
of moles of gas and R is some other constant. Avogadro’s hypothesis says that, if P,
V, and T are the same for two different gases, then » must be the same. But this can
hold true only if R has the same value for every gas. R is therefore a universal con-
stant, called the gas constant. The final form of the ideal-gas law is

PV = nRT ideal gas (1.18)*

Equation (1.18) incorporates Boyle’s law, Charles’ law (more accurately, the defini-
tion of 7'), and Avogadro’s hypothesis.

An ideal gas is a gas that obeys PV = nRT. Real gases obey this law only in the
limit of zero density, where intermolecular forces are negligible.

Using M = m/n [Eq. (1.4)] to introduce the molar mass M of the gas, we can write
the ideal-gas law as

PV = mRT/M  ideal gas

This form enables us to find the molecular weight of a gas by measuring the volume
occupied by a known mass at a known 7 and P. For accurate results, one does a series
of measurements at different pressures and extrapolates the results to zero pressure
(see Prob. 1.21). We can also write the ideal-gas law in terms of the density p = m/V as

P = pRT/M  ideal gas

The only form worth remembering is PV = nRT, since all other forms are easily
derived from this one.

The gas constant R can be evaluated by taking a known number of moles of some
gas held at a known temperature and carrying out a series of pressure—volume mea-
surements at successively lower pressures. Evaluation of the zero-pressure limit of
PV/nT then gives R (Prob. 1.20). The experimental result is

R = 82.06 (cm® atm)/(mol K) (1.19)*
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Since 1 atm = 101325 N/m? [Eq. (1.10)], we have 1 cm? atm = (10~ 2m)? X 101325 N/m?
=0.101325 m* N/m? = 0.101325 J. [One newton-meter = one joule (J); see Sec. 2.1.]
Hence R = 82.06 X 0.101325 J/(mol K), or

R = 8.3145J/(mol K) = 8.3145 (m* Pa)/(mol K) (1.20)*

Using 1 atm = 760 torr and 1 bar = 750 torr, we find from (1.19) that R = 83.14,
(cm? bar)/(mol K). Using 1 calorie (cal) = 4.184 J [Eq. (2.44)], we find

R = 1.987 cal/(mol K) 1.21*

Accurate values of physical constants are listed inside the back cover.

Ideal Gas Mixtures

So far, we have considered only a pure ideal gas. In 1810 Dalton found that the pres-
sure of a mixture of gases equals the sum of the pressures each gas would exert if
placed alone in the container. (This law is exact only in the limit of zero pressure.) If
n, moles of gas 1 is placed alone in the container, it would exert a pressure n,R7/V
(where we assume the pressure low enough for the gas to behave essentially ideally).
Dalton’s law asserts that the pressure in the gas mixture is P = n,RT/V + n,RT/V +
s = +n, + - )RTIV = n RT/V, so

PV = n.RT ideal gas mixture (1.22)*

Dalton’s law makes sense from the molecular picture of gases. Ideal-gas molecules do
not interact with one another, so the presence of gases 2, 3, . . . has no effect on gas 1,
and its contribution to the pressure is the same as if it alone were present. Each gas
acts independently, and the pressure is the sum of the individual contributions. For real
gases, the intermolecular interactions in a mixture differ from those in a pure gas, and
Dalton’s law does not hold accurately.

The partial pressure P, of gas i in a gas mixture (ideal or nonideal) is defined as

P = x,P any gas mixture (1.23)*

where x; = n,/n,, is the mole fraction of i in the mixture and P is the mixture’s
pressure. For an ideal gas mixture, P; = x,P = (n,/n,,) (n,,RT/V) and

P, = n,RT/V ideal gas mixture (1.24)*

The quantity n,RT/V is the pressure that gas i of the mixture would exert if it alone
were present in the container. However, for a nonideal gas mixture, the partial pres-
sure P; as defined by (1.23) is not necessarily equal to the pressure that gas i/ would
exert if it alone were present.

EXAMPLE 1.1 Density of an ideal gas

Find the density of F, gas at 20.0°C and 188 torr.

The unknown is the density p, and it is often a good idea to start by writ-
ing the definition of what we want to find: p = m/V. Neither m nor V is given,
so we seek to relate these quantities to the given information. The system is a
gas at a relatively low pressure, and it is a good approximation to treat it as an
ideal gas. For an ideal gas, we know that /' = nRT/P. Substitution of V =
nRT/P into p = m/V gives p = mP/nRT. In this expression for p, we know P
and 7 but not m or n. However, we recognize that the ratio m/n is the mass per
mole, that is, the molar mass M. Thus p = MP/RT. This expression contains only
known quantities, so we are ready to substitute in numbers. The molecular



weight of F, is 38.0, and its molar mass is M = 38.0 g/mol. The absolute temper-
ature is 7' = 20.0° + 273.15° = 293.2 K. Since we know a value of R involving
atmospheres, we convert P to atmospheres: P = (188 torr) (1 atm/760 torr) =
0.247 atm. Then

MP (38.0 g mol~")(0.247 atm)
RT ~ (82.06 cm® atm mol ™' K~1)(293.2 K)

Note that the units of temperature, pressure, and amount of substance
(moles) canceled. The fact that we ended up with units of grams per cubic cen-
timeter, which is a correct unit for density, provides a check on our work. /¢ is
strongly recommended that the units of every physical quantity be written down
when doing calculations.

=3.90 X 10~* g/cm’

Exercise

Find the molar mass of a gas whose density is 1.80 g/L at 25.0°C and 880 torr.
(Answer: 38.0 g/mol.)

|16l DIFFERENTIAL CALCULUS

Physical chemistry uses calculus extensively. We therefore review some ideas of dif-
ferential calculus. (In the novel Arrowsmith, Max Gottlieb asks Martin Arrowsmith,
“How can you know physical chemistry without much mathematics?”)

Functions and Limits

To say that the variable y is a function of the variable x means that for any given
value of x there is specified a value of y; we write y = f(x). For example, the area of
a circle is a function of its radius 7, since the area can be calculated from r by the
expression 7772, The variable x is called the independent variable or the argument of
the function £, and y is the dependent variable. Since we can solve for x in terms of
vy to get x = g(y), it is a matter of convenience which variable is considered to be the
independent one. Instead of y = f(x), one often writes y = y(x).

To say that the limit of the function f(x) as x approaches the value a is equal to ¢
[which is written as lim,_,, f(x) = c] means that for all values of x sufficiently close to
a (but not necessarily equal to @) the difference between f(x) and ¢ can be made as
small as we please. For example, suppose we want the limit of (sin x)/x as x goes to
zero. Note that (sin x)/x is undefined at x = 0, since 0/0 is undefined. However, this
fact is irrelevant to determining the limit. To find the limit, we calculate the following
values of (sin x)/x, where x is in radians: 0.99833 for x = 0.1, 0.99958 for x =
*0.05, 0.99998 for x = *=0.01, etc. Therefore

sin x

lim =1
x—0 X

Of course, this isn’t a rigorous proof. Note the resemblance to taking the limit as P — 0
in Eq. (1.15); in this limit both V" and V|, become infinite as P goes to zero, but the limit
has a well-defined value even though co/co is undefined.

Slope

The slope of a straight-line graph, where y is plotted on the vertical axis and x on the
horizontal axis, is defined as (y, — y,)/(x, — x;) = Ay/Ax, where (x,, y,) and (x,, ¥,)
are the coordinates of any two points on the graph, and A (capital delta) denotes the
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change in a variable. If we write the equation of the straight line in the form y = mx +
b, it follows from this definition that the line’s slope equals m. The intercept of the
line on the y axis equals b, since y = b when x = 0.

The slope of any curve at some point P is defined to be the slope of the straight
line tangent to the curve at P. For an example of finding a slope, see Fig. 9.3. Students
sometimes err in finding a slope by trying to evaluate Ay/Ax by counting boxes on the
graph paper, forgetting that the scale of the y axis usually differs from that of the x axis
in physical applications.

In physical chemistry, one often wants to define new variables to convert an equa-
tion to the form of a straight line. One then plots the experimental data using the new
variables and uses the slope or intercept of the line to determine some quantity.

EXAMPLE 1.2 Converting an equation to linear form

According to the Arrhenius equation (16.66), the rate coefficient k£ of a chemical
reaction varies with absolute temperature according to the equation k = Ae %/R7,
where 4 and E, are constants and R is the gas constant. Suppose we have mea-
sured values of k at several temperatures. Transform the Arrhenius equation to
the form of a straight-line equation whose slope and intercept will enable 4 and
E, to be found.

The variable T appears as part of an exponent. By taking the logs of both
sides, we eliminate the exponential. Taking the natural logarithm of each side of
k= Ae B/RT we get In k = In(de /RT) = InA + In(e /RT) = 1nA — E_ /RT,
where Eq. (1.67) was used. To convert the equation Ink = In4 — E,/RT to a
straight-line form, we define new variables in terms of the original variables &
and T as follows: y = Ink and x = 1/7T. This gives y = (—E,/R)x + In A.
Comparison with y = mx + b shows that a plot of In & on the y axis versus 1/7T
on the x axis will have slope —F, /R and intercept In 4. From the slope and
intercept of such a graph, £, and 4 can be calculated.

Exercise

The moles 7 of a gas adsorbed divided by the mass m of a solid adsorbent often
varies with gas pressure P according to n/m = aP/(1 + bP), where a and b are
constants. Convert this equation to a straight-line form, state what should be
plotted versus what, and state how the slope and intercept are related to a and b.
(Hint: Take the reciprocal of each side.)

Derivatives

Let y = f(x). Let the independent variable change its value from x to x + /; this will
change y from f(x) to f(x + %). The average rate of change of y with x over this inter-
val equals the change in y divided by the change in x and is

Ay St h) —fx) S+ h) — fx)
Ax  (x+h)—-x h

The instantaneous rate of change of y with x is the limit of this average rate of change
taken as the change in x goes to zero. The instantaneous rate of change is called the
derivative of the function fand is symbolized by 1":

i) = tim 2T ) A

— 1.25)*
h—0 h Ax—0 Ax ( )



Figure 1.10 shows that the derivative of the function y = f(x) at a given point is equal
to the slope of the curve of y versus x at that point.

As a simple example, let y = x%. Then
x + h)? = 2xh + K
Rty T lim x4 h) = 2x

h—0

= lm
h—0

fx) = lim
The derivative of x? is 2x.

A function that has a sudden jump in value at a certain point is said to be discon-
tinuous at that point. An example is shown in Fig. 1.11a. Consider the function y =
x|, whose graph is shown in Fig. 1.115. This function has no jumps in value anywhere
and so is everywhere continuous. However, the slope of the curve changes suddenly
at x = 0. Therefore, the derivative y’ is discontinuous at this point; for negative x the
function y equals —x and y’ equals —1, whereas for positive x the function y equals x
and y’ equals +1.

Since f”(x) is defined as the limit of Ay/Ax as Ax goes to zero, we know that, for
small changes in x and y, the derivative f"(x) will be approximately equal to Ay/Ax.
Thus Ay = f"(x) Ax for Ax small. This equation becomes more and more accurate as
Ax gets smaller. We can conceive of an infinitesimally small change in x, which we
symbolize by dx. Denoting the corresponding infinitesimally small change in y by dy,
we have dy = f"(x) dx, or

dy = y'(x) dx (1.26)*

The quantities dy and dx are called differentials. Equation (1.26) gives the alternative
notation dy/dx for a derivative. Actually, the rigorous mathematical definition of dx
and dy does not require these quantities to be infinitesimally small; instead they can
be of any magnitude. (See any calculus text.) However, in our applications of calculus
to thermodynamics, we shall always conceive of dy and dx as infinitesimal changes.

Let a and n be constants, and let u and v be functions of x; # = u(x) and v = v(x).
Using the definition (1.25), one finds the following derivatives:

da o oda) e d@) o de
dx ’ dx a dx’ dx mes dx ae
dlnax 1 dsinax decosax _ .
R PP a cos ax, T a sin ax
*
du+v) du do dw)  d d (1.27)
—_— = =u-—+uv—
dx dx  dx dx dx dx
du/v)  duv") L, dv _, du
= = —uw "—+v —
dx dx dx dx

The chain rule is often used to find derivatives. Let z be a function of x, where x
is a function of 7; z = z(x), where x = x(7). Then z can be expressed as a function of r;
z = z(x) = z[x(r)] = g(r), where g is some function. The chain rule states that dz/dr =
(dz/dx) (dx/dr). For example, suppose we want (d/dr) sin 3r%. Let z = sinx and x =
3r2. Then z = sin 372, and the chain rule gives dz/dr = (cos x) (6r) = 6r cos 3r>.

Equations (1.26) and (1.27) give the following formulas for differentials:

d(x") = nx"""dx,
dlu +v) = du + dv,

d(e™) = ae™ dx
duv) = udv + vdu

(1.28)*
d(au) = adu,

We often want to find a maximum or minimum of some function y(x). For a
function with a continuous derivative, the slope of the curve is zero at a maximum or

19

Section 1.6
Differential Calculus

Figure 1.10

As point 2 approaches point 1, the
quantity Ay/Ax = tan 6 approaches
the slope of the tangent to the
curve at point 1.

1

(a)

=

(b)
Figure 1.11

(a) A discontinuous function.
(b) The function y = |x].
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Figure 1.12

Horizontal tangent at maximum
and minimum points.

minimum point (Fig. 1.12). Hence to locate an extremum, we look for the points
where dy/dx = 0.

The function dy/dx is the first derivative of y. The second derivative d?y/dx? is
defined as the derivative of the first derivative: d?y/dx*> = d(dy/dx)/dx.

Partial Derivatives
In thermodynamics we usually deal with functions of two or more variables. Let z be a
function of x and y; z = f(x, y). We define the partial derivative of z with respect to x as

(;) _ S Any) — fey) 129

Ax—0 Ax

This definition is analogous to the definition (1.25) of the ordinary derivative, in that
if y were a constant instead of a variable, the partial derivative (dz/dx), would become
just the ordinary derivative dz/dx. The variable being held constant in a partial deriv-
ative is often omitted and (9z/dx), written simply as dz/dx. In thermodynamics there
are many possible variables, and to avoid confusion it is essential to show which vari-
ables are being held constant in a partial derivative. The partial derivative of z with re-
spect to y at constant x is defined similarly to (1.29):

(8z> Sy £ Ay) — flx,p)
— ] = lim
/. A0 Ay

There may be more than two independent variables. For example, let z = g(w, x, ).
The partial derivative of z with respect to x at constant w and y is

<az) _ iy SOnXH AxY) = g(wx, )
w,y

im
ox Ax—0 Ax

How are partial derivatives found? To find (dz/dx), we take the ordinary derivative
of z with respect to x while regarding y as a constant. For example, if z = x%° + &,
then (9z/9x), = 2xy° + ye'; also, (9z/9y), = 3x%* + xe™.

Let z = f(x, y). Suppose x changes by an infinitesimal amount dx while y remains
constant. What is the infinitesimal change dz in z brought about by the infinitesimal
change in x? If z were a function of x only, then [Eq. (1.26)] we would have dz =
(dz/dx) dx. Because z depends on y also, the infinitesimal change in z at constant y is
given by the analogous equation dz = (9z/dx), dx. Similarly, if y were to undergo an
infinitesimal change dy while x were held constant, we would have dz = (9z/dy), dy.
If now both x and y undergo infinitesimal changes, the infinitesimal change in z is the
sum of the infinitesimal changes due to dx and dy:

0z 0z
dz = <> dx + <) dy (1.30)*
ax /y, Y /x

In this equation, dz is called the total differential of z(x, y). Equation (1.30) is often
used in thermodynamics. An analogous equation holds for the total differential of a
function of more than two variables. For example, if z = z(7, s, f), then

0 0 0
dz = <Z> dr + <Z) ds + (Z) dt
ar st as ot ot s

Three useful partial-derivative identities can be derived from (1.30). For an infin-
itesimal process in which y does not change, the infinitesimal change dy is 0, and

(1.30) becomes
[ oz
dz, = P : dx, (1.31)



where the y subscripts on dz and dx indicate that these infinitesimal changes occur at
constant y. Division by dz, gives

= ()= ()3
ox ydzy ox /,\ 0z /,

since from the definition of the partial derivative, the ratio of infinitesimals dxy/dzy
equals (3x/0z),. Therefore

<(’9z) — 1.32)*
ax /), (ox/oz), (132)

Note that the same variable, y, is being held constant in both partial derivatives in
(1.32). When y is held constant, there are only two variables, x and z, and you will
probably recall that dz/dx = 1/(dx/dz).

For an infinitesimal process in which z stays constant, Eq. (1.30) becomes

5} 0.
0= (Z) dx, + (Z) dy. (1.33)
ox ’ ay /s

Dividing by dy, and recognizing that dx,/dy, equals (9x/dy),, we get

- (2)(2)+(2) = (2)(2)-(2)-

where (1.32) with x and y interchanged was used. Multiplication by (9)/dz), gives

B
dy /. \dz /. \ox /, )

Equation (1.34) looks intimidating but is actually easy to remember because of the
simple pattern of variables: dx/dy, dy/dz, dz/dx; the variable held constant in each par-
tial derivative is the one that doesn’t appear in that derivative.

Sometimes students wonder why the dy’s, dz’s, and dx’s in (1.34) don’t cancel to
give +1 instead of —1. One can cancel dy’s etc. only when the same variable is held
constant in each partial derivative. The infinitesimal change dy, in y with z held con-
stant while x varies is not the same as the infinitesimal change dy, in y with x held
constant while z varies. [Note that (1.32) can be written as (9z/0x),(dx/dz), = 1; here,
cancellation occurs.]

Finally, let dy in (1.30) be zero so that (1.31) holds. Let # be some other variable.
Division of (1.31) by du, gives

dz

2 _ <az> >y
du, ox /, du,

(&) - (2)()
auy_ ax /y\ou /, (1.35)

The dx’s in (1.35) can be canceled because the same variable is held constant in each
partial derivative.

A function of two independent variables z(x, y) has the following four second
partial derivatives:

ox? y dx \dx /, y’ 8y2 N AN
ox dy ox\ dy /. y’ dy ox day\ox/, ]y
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Provided 9%z/(0x dy) and 9%z/(dy dx) are continuous, as is generally true in physical
applications, one can show that they are equal (see any calculus text):

9%z _ 0%z

0x dy B dy 0x

(1.36)*

The order of partial differentiation is immaterial.
Fractions are sometimes written with a slant line. The convention is that

a/bc+dEi+d
bc

LT EQUATIONS OF STATE

Experiment generally shows the thermodynamic state of a homogeneous system with a
fixed composition to be specified when the two variables P and T are specified. If the
thermodynamic state is specified, this means the volume ¥ of the system is specified.
Given values of P and T of a fixed-composition system, the value of V' is determined.
But this is exactly what is meant by the statement that V' is a function of P and T.
Therefore, V = u(P, T), where u is a function that depends on the nature of the system.
If the restriction of fixed composition is dropped, the state of the system will depend
on its composition as well as on P and 7. We then have

V=Ff(P T n,ny,...) (1.37)
where 1, n,, . . . are the numbers of moles of substances 1, 2, . . . in the homogeneous
system and f'is some function. This relation between P, T, n,, n,, . . ., and V' is called

a volumetric equation of state, or, more simply, an equation of state. If the system
is heterogeneous, each phase will have its own equation of state.

For a one-phase system composed of » moles of a single pure substance, the equa-
tion of state (1.37) becomes V = f(P, T, n), where the function f depends on the nature
of the system; f for liquid water differs from f for ice and from f for liquid benzene. Of
course, we can solve the equation of state for P or for 7 to get the alternative form P =
gV, T,n)or T = h(P, V, n), where g and 4 are certain functions. The laws of thermo-
dynamics are general and cannot be used to deduce equations of state for particular
systems. Equations of state must be determined experimentally. One can also use
statistical mechanics to deduce an approximate equation of state starting from some
assumed form for the intermolecular interactions in the system.

An example of an equation of state is PV = nRT, the equation of state of an ideal
gas. In reality, no gas obeys this equation of state.

The volume of a one-phase, one-component system is clearly proportional to the
number of moles n present at any given 7 and P. Therefore the equation of state for
any pure one-phase system can be written in the form

V = nk(T, P)

where the function £ depends on what substance is being considered. Since we usually
deal with closed systems (7 fixed), it is convenient to eliminate n and write the equa-
tion of state using only intensive variables. To this end, we define the molar volume
V., of any pure, one-phase system as the volume per mole:

Vo= V/n (1.38)*

V., is a function of T and P; V,, = k(T, P). For an ideal gas, V,, = RT/P. The m sub-
script in ¥, is sometimes omitted when it is clear that a molar volume is meant. (A
commonly used alternative symbol for V is V.)



For any extensive property of a pure one-phase system, we can define a corre-
sponding molar quantity. For example, the molar mass of a substance is m/n [Eq. (1.4)].

What about equations of state for real gases? We shall see in Chapter 14 that ig-
noring forces between the molecules leads to the ideal-gas equation of state PV =
nRT. Actually, molecules initially attract each other as they approach and then repel
each other when they collide. To allow for intermolecular forces, van der Waals in
1873 modified the ideal-gas equation to give the van der Waals equation

an®

(P + Vz)(V— nb) = nRT (1.39)
Each gas has its own a and b values. Determination of a and b from experimental data is
discussed in Sec. 8.4, which lists some a and b values. Subtraction of nb from V corrects
for intermolecular repulsion. Because of this repulsion, the volume available to the gas
molecules is less than the volume ¥ of the container. The constant 4 is approximately the
volume of one mole of the gas molecules themselves. (In a liquid, the molecules are quite
close together, so b is roughly the same as the molar volume of the liquid.) The term
an*/V? allows for intermolecular attraction. These attractions tend to make the pressure
exerted by the gas [given by the van der Waals equation as P = nRT/(V — nb) — an?/V?]
less than that predicted by the ideal-gas equation. The parameter a is a measure of the
strength of the intermolecular attraction; b is a measure of molecular size.

For most liquids and solids at ordinary temperatures and pressures, an approxi-
mate equation of state is

Vo=1c¢ +c, T+ c;T* — ¢yP — ¢sPT (1.40)

where ¢, . . ., ¢5 are positive constants that must be evaluated by fitting observed
V., versus T and P data. The term ¢, is much larger than each of the other terms, so V,,
of the liquid or solid changes only slowly with 7" and P. In most work with solids
or liquids, the pressure remains close to 1 atm. In this case, the terms involving P can
be neglected to give V,, = ¢, + ¢,T + ¢;T? This equation is often written in the
form V,, = V, (1 + At + Bf?), where V,_, is the molar volume at 0°C and ¢ is the
Celsius temperature. Values of the constants 4 and B are tabulated in handbooks.
The terms ¢,T + ¢;T? in (1.40) indicate that V,, usually increases as T increases. The
terms —c,P — ¢sPT indicate that V decreases as P increases.

For a single-phase, pure, closed system, the equation of state of the system can be
written in the form V,, = k(T, P). One can make a three-dimensional plot of the equation
of state by plotting P, 7, and ¥, on the x, y, and z axes. Each possible state of the system
gives a point in space, and the locus of all such points gives a surface whose equation is
the equation of state. Figure 1.13 shows the equation-of-state surface for an ideal gas.

If we hold one of the three variables constant, we can make a two-dimensional
plot. For example, holding 7 constant at the value 7', we have PV, = RT, as the equa-
tion of state of an ideal gas. An equation of the form xy = constant gives a hyperbola
when plotted. Choosing other values of 7, we get a series of hyperbolas (Fig. 1.6a).
The lines of constant temperature are called isotherms, and a constant-temperature
process is called an isothermal process. We can also hold either P or V,, constant and
plot isobars (P constant) or isochores (V,, constant).

Figure 1.14 shows some isotherms and isobars of liquid water.

We shall find that thermodynamics enables us to relate many thermodynamic
properties of substances to partial derivatives of P, V, and T with respect to one an-
other. This is useful because these partial derivatives can be readily measured. There
are six such partial derivatives:

G (), Gi) () G (GF)
ar )y \op )7 \avn/)7 \or/),” \av.)y \oP/,
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The relation (9z/dx), = 1/(9x/9z), [Eq. (1.32)] shows that three of these six are the re-
ciprocals of the other three:

Go) =@ )= ame i)y~ Gram,
aP ), (aP/aT),’ Wylp  (9Vn/0T)) Wylr  (9V,)OP);
(1.41)

Furthermore, the relation (9x/dy),(9y/dz) (3z/9x), = —1 [Eq. (1.34)] with x, y, and z
replaced by P, V, and T, respectively, gives

() (), (55), =
W )e\ 9T )\ 0P ),

oP P\ [V, av,,/oT
(), () o
T /. IV /r\ 0T Jp (0V/0P) 1
where (9z/0x), = 1/(9x/dz), was used twice.
Hence there are only two independent partial derivatives: (dV,/07), and
(0V,/dP);. The other four can be calculated from these two and need not be measured.

We define the thermal expansivity (or cubic expansion coefficient) « (alpha) and the
isothermal compressibility « (kappa) of a substance by

a(T, P) = 1<8V> = 1((91/'“) (1.43)*
V\OT Jp,  Va\ 0T Jp
K(T, P) = —1<‘W> = _1<an> (1.44)*
VNP )z, Va\ 0P /7

a and k tell how fast the volume of a substance increases with temperature and de-
creases with pressure. The purpose of the 1/V factor in their definitions is to make
them intensive properties. Usually, « is positive; however, liquid water decreases in
volume with increasing temperature between 0°C and 4°C at 1 atm. One can prove
from the laws of thermodynamics that k must always be positive (see Zemansky and
Dittman, sec. 14-9, for the proof). Equation (1.42) can be written as

<‘9P> =2 1.45
aoT Vm_K (1.45)

EXAMPLE 1.3 « and « of an ideal gas

For an ideal gas, find expressions for a and « and verify that Eq. (1.45) holds.

To find @ and k from the definitions (1.43) and (1.44), we need the partial
derivatives of V. We therefore solve the ideal-gas equation of state PV,, = RT
for V,, and then differentiate the result. We have V,, = RT/P. Differentiation with
respect to 7 gives (V,,/0T), = R/P. Thus

1 [V, 1 (R PR 1
RN e I (1.46)
v\ or Jp V,\P RTP T
1 [V, 1[a (RT 1 RT 1
k= ——(Lmy - 2| %[22 =—|(-—=)== @47
V.\ oP ), V.loP \ P /|, Vo \ P? =
oP o (RT R
() _ [ ()} _ (1.48)
aT /)y, T \ Vo) Iy Vi

But from (1.45), we have (0P/dT),, = a/k = T~ '/P~' = P/T=nRTV"'/T=R/V,,
which agrees with (1.48).



Exercise

For a gas obeying the equation of state V,, = RT/P + B(T), where B(T) is a certain
function of 7, (a) find a and «; (b) find (0P/9T),, in two different ways. [Answer:
a = (RIP+ dBldD/V,; k = RTIV, P (dP/dT), = PIT + P(dB/d1)/RT)

For solids, « is typically 1075 to 10~* KL, For liquids, « is typically 10735 to
1073 K~L. For gases, « can be estimated from the ideal-gas «, which is 1/T: for tem-
peratures of 100 to 1000 K, « for gases thus lies in the range 1072 to 1073 K~1.

For solids, « is typically 1076 to 107° atm™!. For liquids, « is typically 10~*
atm™!. Equation (1.47) for ideal gases gives k as 1 and 0.1 atm™! at P equal to 1 and
10 atm, respectively. Solids and liquids are far less compressible than gases because
there isn’'t much space between molecules in liquids and solids.

The quantities « and k can be used to find the volume change produced by a
change in Tor P

EXAMPLE 1.4 Expansion due to a temperature increase

Estimate the percentage increase in volume produced by a 10°C temperature in-
crease in a liquid with the typical a value 0.001 K™, approximately independent
of temperature.

Equation (1.43) gives dV = aV dT}. Since we require only an approximate
answer and since the changes in 7and V are small (« is small), we can approx-
imate the ratio dV/dT} by the ratio AV,/AT} of finite changes to get AV,/V =
a AT, = (0.001 K1) (10K) = 0.01 = 1%.

Exercise

For water at 80°C and 1 atm, @ = 6.412;, X 107" K~!and p = 0.971792 g/cm?.
Using the approximation dVp/dT, =~ AVp/ATpfor ATpsmall, find the density of
water at 81°C and 1 atm and compare with the true value 0.971166 g/cm3.
(Answer: 0.971169 g/cm?3.)

L8 INTEGRAL CALCULUS

Differential calculus was reviewed in Sec. 1.6. Before reviewing integral calculus, we
recall some facts about sums.

Sums
The definition of the summation notation is

n

Ma=a+ta+ - +a, (1.49)*
=1
For example, 33, # = 12 4+ 22 4+ 3% = 14. When the limits of a sum are clear, they
are often omitted. Some identities that follow from (1.49) are (Prob. 1.59)

n n

E ca; = cz a, E (a; + b)) = 2 a; + E b; (1.50)*
=1 =

=1 =1 i=1

n m

iaibj= > a > b (1.51)

=1 j=1 =1 =1
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Integral Calculus

Frequently one wants to find a function y(x) whose derivative is known to be a certain
function f(x); dy/dx = f(x). The most general function y that satisfies this equation is
called the indefinite integral (or antiderivative) of f(x) and is denoted by [ f(x) dx.

If dy/dx = f(x) then y = Jf(x) dx (1.52)*

The function f(x) being integrated in (1.52) is called the integrand.

Since the derivative of a constant is zero, the indefinite integral of any function
contains an arbitrary additive constant. For example, if f(x) = x, its indefinite integral
y(x) is 3x2 + C, where C is an arbitrary constant. This result is readily verified by
showing that y satisfies (1.52), that is, by showing that (d/dx) Gx*> + C) = x. To save
space, tables of indefinite integrals usually omit the arbitrary constant C.

From the derivatives given in Sec. 1.6, it follows that

Jaf(x) dx = ajf(x) dx, J [f(x) + gx)]dx = ff(x) dx + Jg(x) dx

(1.53)*
xn+1
de=x+C, jx”dx= 1 + C wheren # —1  (1.54)*
n
1 eax
J . dx =Inx + C, J e“dx = o +C (1.55)*
J sinax dx = — cos ax C, J cos ax dx = S ax + C (1.56)*

where a and n are nonzero constants and C is an arbitrary constant. For more compli-
cated integrals than those in Egs. (1.53) through (1.56), use a table of integrals or the
website integrals.wolfram.com, which does indefinite integrals at no charge.

A second important concept in integral calculus is the definite integral. Let f(x) be
a continuous function, and let @ and b be any two values of x. The definite integral of
fbetween the limits @ and b is denoted by the symbol

b
J S(x) dx (1.57)

The reason for the resemblance to the notation for an indefinite integral will become
clear shortly. The definite integral (1.57) is a number whose value is found from the
following definition. We divide the interval from a to b into n subintervals, each of
width Ax, where Ax = (b — a)/n (see Fig. 1.15). In each subinterval, we pick any point
we please, denoting the chosen points by x,, x,, . . ., x,. We evaluate f(x) at each of
the n chosen points and form the sum

D () Ax = f(x))Ax + f(xy)Ax + -+ + f(x,)Ax (1.58)
=1
We now take the limit of the sum (1.58) as the number of subintervals »n goes to in-

finity, and hence as the width Ax of each subinterval goes to zero. This limit is, by de-
finition, the definite integral (1.57):

b n
j f(x) dx = lim 2 f(x;) Ax (1.59)

a
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The motivation for this definition is that the quantity on the right side of (1.59) occurs
very frequently in physical problems.

Each term in the sum (1.58) is the area of a rectangle of width Ax and height f(x;).
A typical rectangle is indicated by the shading in Fig. 1.15. As the limit Ax — 0 is
taken, the total area of these n rectangles becomes equal to the area under the curve
f(x) between a and b. Thus we can interpret the definite integral as an area. Areas
lying below the x axis, where f(x) is negative, make negative contributions to the def-
inite integral.

Use of the definition (1.59) to evaluate a definite integral would be tedious. The
fundamental theorem of integral calculus (proved in any calculus text) enables us to
evaluate a definite integral of f(x) in terms of an indefinite integral y(x) of f(x), as

f f(x) dx = y(b) — y(a) where y(x) = ff(x) dx (1.60)*

a

For example, if f(x) = x, a = 2, b = 6, we can take y = 5x (or 3x2 plus some constant)
and (1.60) gives [§x dx =3 x* |§ = 3(6%) — 3(22) = 16.

The integration variable x in the definite integral on the left side of (1.60) does not
appear in the final result (the right side of this equation). It thus does not matter what
symbol we use for this variable. If we evaluate [§ z dz, we still get 16. In general,
J? f(x) dx = [ f(z) dz. For this reason the integration variable in a definite integral is
called a dummy variable. (The integration variable in an indefinite integral is not a
dummy variable.) Similarly it doesn’t matter what symbol we use for the summation
index in (1.49). Replacement of i by j gives exactly the same sum on the right side,
and 7 in (1.49) is a dummy index.

Two identities that readily follow from (1.60) are [% f(x) dx = —[¢ f(x) dx and
15 /ey d + S5 fx) dx = [ f(2) dix.

An important method for evaluating integrals is a change in variables. For exam-
ple, suppose we want [3 x exp (x?) dx. Let z = x?; then dz = 2x dx, and

3 9
2 1 1
jxe" dx = J e‘dz = —e’
2 2 4
2

Note that the limits were changed in accord with the substitution z = x?.

From (1.52), it follows that the derivative of an indefinite integral equals the inte-
grand: (d/dx) [ f(x) dx = f(x). Note, however, that a definite integral is simply a num-
ber and not a function; therefore (d/dx) [% f(x) dx = 0.

9 1
= E(eg — e4) = 4024.2

4
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Figure 1.15

Definition of the definite integral.
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Integration with respect to x for a function of two variables is defined similarly to
(1.52) and (1.59). If y(x, z) is the most general function that satisfies

(x, z)

[le = f(x, z) (1.61)

then the indefinite integral of f(x, z) with respect to x is

Jf(x, z)dx = y(x, z) (1.62)
For example, if f(x, z) = xz3, then y(x, z) = 3x%z3 + g(z), where g is an arbitrary func-
tion of z. If y satisfies (1.61), one can show [in analogy with (1.60)] that a definite in-
tegral of f(x, z) is given by

b
Jf(x, z)dx = y(b,z) — y(a, z) (1.63)
For example, [§ xz3 dx = 3(62)z° + g(z) — 3(20)2° — g(2) = 162°.

The integrals (1.62) and (1.63) are similar to ordinary integrals of a function f{(x)
of a single variable in that we regard the second independent variable z in these inte-
grals as constant during the integration process; z acts as a parameter rather than as a
variable. (A parameter is a quantity that is constant in a particular circumstance but
whose value can change from one circumstance to another. For example, in Newton’s
second law F' = ma, the mass m is a parameter. For any one particular body, m is con-
stant, but its value can vary from one body to another.) In contrast to the integrals
(1.62) and (1.63), in thermodynamics we shall often integrate a function of two or
more variables in which all the variables are changing during the integration. Such in-
tegrals are called line integrals and will be discussed in Chapter 2.

An extremely common kind of physical chemistry problem is the use of the known
derivative dz/dx to find the change Az brought about by the change Ax. This kind of
problem is solved by integration. Typically, the property z is a function of two variables
x and y, and we want the change Az due to Ax while property y is held constant. We
use the partial derivative (9z/dx),, and it helps to write this partial derivative as

9 dz
(Z) =2 (1.64)*
x/,

where dz, and dx, are the infinitesimal changes in z and in x, while y is held constant.

EXAMPLE 1.5 Change in volume with applied pressure

For liquid water at 25°C, isothermal-compressibility data in the pressure range 1 to
401 bar are well fitted by the equation k = a + bP + cP? where a = 45.259 X
10"°bar ', b = —1.1706 X 10 *bar ?, and ¢ = 2.3214 X 10" bar °. The
volume of one gram of water at 25°C and 1 bar is 1.002961 c¢cm?. Find the volume
of one gram of water at 25°C and 401 bar. Compare the value with the experi-
mental value 0.985846 cm’.

We need to find a volume change AV due to a change in pressure AP at con-
stant 7. The compressibility is related to the rate of change of V with respect to
P at constant 7. The definition (1.44) of k gives

1/ 0V 1 dVy
=) == 1.65
« ( > v ap, (1.6)



29

Section 1.8

where the subscripts on the differentials denote changes at constant 7. We want to Integral Calculus

find AV. Therefore, we need to integrate this equation. The two variables are 7 and
P, since T'is constant. To integrate, we need to first separate the variables, putting
everything that depends on / on one side and everything that depends on P on the
other side. k is an intensive quantity that depends on 7 and P, and 7'is constant, so
k belongs on the P side, as is obvious from the equation for x given in the state-
ment of the problem. To separate the variables, we multiply (1.65) by dPto get

1
kdPp = ——dV;

Next, we integrate both sides from the initial state P, V| to the final state P,, 1,
where P,, V|, and P, are known, and 7' is constant:

v, 1 P, P,
—J I—/dV= f Kk dP = J (a + bP + cP*)dP
4 P, P,
—InV];? = (aP + 3bP* + 3cP°)|};
—(In ¥, — In V) = In(Vy/Vy) = a(P, — Py) + 36(P5 — P}) + 35¢(P3 — P})
In[(1.002961 cm?)/V,] = 45.259 X 10~° bar~' (400 bar)
— 3(1.1706 X 10~% bar 2)(401% — 1?)bar?
+ 4(2.3214 X 1072 bar3)(401° — 1%)bar®
In[(1.002961 cm*)/¥,] = 0.0172123
(1.002961 cm?)/¥, = 1.017361

V, = 0.985846 cm®

which agrees with the true value 0.985846 cm®.

Exercise

A liquid with thermal expansivity « is initially at temperature and volume 7}
and V. If the liquid is heated from 7, to 7, at constant pressure, find an
expression for ¥, using the approximation that « is independent of T.
[Answer: In Vy = InV, + (T, — T}).]

Exercise

For liquid water at 1 atm, thermal-expansivity data in the range 25°C to 50°C
are well fitted by the equation a = e + f(¢/°C) + g(¢/°C)?, where ¢ is the
Celsius temperature, e = —1.00871 X 109 K™!, = 1.20561 X 107K !, and
g = —5.4150 X 10 ¥ K™, The volume of one gram of water at 30°C and 1 atm
is 1.004372 c¢cm?’. Find the volume of one gram of water at 50°C and 1 atm.
Compare with the experimental value 1.012109 cm?. (Answer: 1.012109 cm?.)

Logarithms

Integration of 1/x gives the natural logarithm In x. Because logarithms are used so often
in physical chemistry derivations and calculations, we now review their properties. If
x = &, then the exponent s is said to be the logarithm (log) of x to the base a: if ¢* =
x, then log, x = s. The most important base is the irrational number e = 2.71828 . . .,
defined as the limit of (1 + b)"? as b — 0. Logs to the base e are called natural



30

Chapter 1
Thermodynamics

logarithms and are written as In x. For practical calculations, one often uses logs to
the base 10, called common logarithms and written as log x, log,, x, or Ig x. We have

Inx = log, x, log x = logo x (1.66)*
If 10’ = x, thenlogx = t. Ifef =x, thenlnx =s. (1.67)

From (1.67), we have
e =x and 1008 = x (1.68)

From (1.67), it follows that In ¢* = s. Since ¢™* = x = In e, the exponential and nat-
ural logarithmic functions are inverses of each other. The function e* is often written
as exp x. Thus, exp x = e*. Since ¢! = ¢,e’ = 1, and e = 0, we have Ine = 1,
In1=0,and In 0 = —oo. One can take the logarithm or the exponential of a dimen-
sionless quantity only.

Some identities that follow from the definition (1.67) are

Inxy =Inx + Iny, In(x/y) =Inx —Iny (1.69)*
Inx*=kinx (1.70)*
lnx - (loglo x)/(loglo e) = 10g10 X In 10 = 23026 loglox (171)

To find the log of a number greater than 10'% or less than 107!%°, which cannot
be entered on most calculators, we use log(ab) = log a + log b and log 10? = b. For
example,

logyo (2.75 X 107"%%) = log,y 2.75 + log;o 1071°° = 0.439 — 150 = —149.561

To find the antilog of a number greater than 100 or less than —100, we proceed as
follows. If we know that log,, x = —184.585, then

x = 107" = 1075107 = 0.260 X 107" = 2.60 X 107'%

L9 STUDY SUGGESTIONS

A common reaction to a physical chemistry course is for a student to think, “This
looks like a tough course, so I’d better memorize all the equations, or I won’t do well.”
Such a reaction is understandable, especially since many of us have had teachers who
emphasized rote memory, rather than understanding, as the method of instruction.

Actually, comparatively few equations need to be remembered (they have been
marked with an asterisk), and most of these are simple enough to require little effort
at conscious memorization. Being able to reproduce an equation is no guarantee of
being able to apply that equation to solving problems. To use an equation properly, one
must understand it. Understanding involves not only knowing what the symbols stand
for but also knowing when the equation applies and when it does not apply. Everyone
knows the ideal-gas equation PV = nRT, but it’s amazing how often students will use
this equation in problems involving liquids or solids. Another part of understanding an
equation is knowing where the equation comes from. Is it simply a definition? Or is it
a law that represents a generalization of experimental observations? Or is it a rough
empirical rule with only approximate validity? Or is it a deduction from the laws of
thermodynamics made without approximations? Or is it a deduction from the laws of
thermodynamics made using approximations and therefore of limited validity?

As well as understanding the important equations, you should also know the
meanings of the various defined terms (closed system, ideal gas, etc.). Boldface type
(for example, isotherm) is used to mark very important terms when they are first
defined. Terms of lesser importance are printed in italic type (for example, isobar). If
you come across a term whose meaning you have forgotten, consult the index; the
page number where a term is defined is printed in boldface type.



Working problems is essential to learning physical chemistry. Suggestions for
solving problems are given in Sec. 2.12. It’s a good idea to test your understanding of
a section by working on some relevant problems as soon as you finish each section.
Do not wait until you feel you have mastered a section before working some problems.
The problems in this book are classified by section.

Keep up to date in assignments. Cramming does not work in physical chemistry
because of the many concepts to learn and the large amount of practice in working
problems that is needed to master these concepts. Most students find that physical
chemistry requires a lot more study and problem-solving time than the typical college
course, so be sure you allot enough time to this course.

Make studying an active process. Read with a pencil at hand and use it to verify
equations, to underline key ideas, to make notes in the margin, and to write down
questions you want to ask your instructor. Sort out the basic principles from what is
simply illustrative detail and digression. In this book, small print is used for historical
material, for more advanced material, and for minor points.

After reading a section, make a written summary of the important points. This is
a far more effective way of learning than to keep rereading the material. You might
think it a waste of time to make summaries, since chapter summaries are provided.
However, preparing your own summary will make the material much more meaning-
ful to you than if you simply read the one at the end of the chapter.

A psychologist carried out a project on improving student study habits that raised
student grades dramatically. A key technique used was to have students close the text-
book at the end of each section and spend a few minutes outlining the material; the
outline was then checked against the section in the book. [L. Fox in R. Ulrich et al.
(eds.), Control of Human Behavior, Scott, Foresman, 1966, pp. 85-90.]

Before reading a chapter in detail, browse through it first, reading only the section
headings, the first paragraph of each section, the summary, and some of the problems
at the end of the chapter. This gives an idea of the structure of the chapter and makes
the reading of each section more meaningful. Reading the problems first lets you
know what you are expected to learn from the chapter.

You might try studying occasionally with another person. Discussing problems
with someone else can help clarify the material in your mind.

Set aside enough time to devote to this course. Physical chemistry is a demanding
subject and requires a substantial investment of time to learn. A study of violin
students found that those judged the best had accumulated at age 18 an average of
7400 hours of lifetime practice, as compared with 5300 hours for those violinists
judged only as good, and 3400 hours of practice for violinists at a still-lower playing
ability [K. A. Ericsson et al., Psychologic. Rev., 100, 363 (1993)]. Studies of experts
in chess, sports, and medicine have found similar strong correlations between the level
of expertise and the amount of practice. Ericsson stated that “The extensive evidence
for modifiability by extended practice led my colleagues and me to question whether
there is any firm evidence that innate talent is a necessary prerequisite for developing
expert performance [see G. Schraw, Educ. Psychol. Rev,, 17, 389 (2005)].

Additional support for the primary importance of effort are the following state-
ments (C. S. Dweck, Scientific American Mind, Dec. 2007, p. 36): “research is con-
verging on the conclusion that great accomplishment, and even what we call genius, is
typically the result of years of passion and dedication and not something that flows nat-
urally from a gift”; “hard work and discipline contribute much more to school achieve-
ment than IQ does”; “studies show that teaching people . . . to focus on effort rather
than intelligence or talent, helps make them into high achievers in school and in life.”

Ericsson emphasizes the importance of deliberate practice: “deliberate practice is
a highly structured activity, the explicit goal of which is to improve performance.
Specific tasks are invented to overcome weaknesses, and performance is carefully
monitored to provide cues for ways to improve it further.” [K. A. Ericsson et al.,
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Psychologic. Rev., 100, 363 (1993)]. It’s a good idea to analyze the kinds of mistakes
you are making in physical chemistry and deliberately aim to improve in areas you are
deficient in. If you are getting problems wrong because you are making mistakes in
calculus or algebra, practice doing derivatives and integrals. If you get problems
wrong because you are being inconsistent with units, get in the habit of always in-
cluding the units of each quantity when you do problems, and take the time to make
sure that units cancel so as to give the proper units for the answer; make sure you know
what the SI units are for each physical quantity encountered. If you are getting prob-
lems wrong or are unable to do problems because you overlook or misinterpret or
misapply the conditions given in the problems, make sure you are familiar with the
precise definitions of such terms as isothermal and adiabatic, pay careful attention
when you read a problem to what the conditions are, and when you learn starred equa-
tions, make sure you also learn the conditions of applicability for each equation.

As to studying, research has shown that students who study in a quiet place do bet-
ter than those who study in a place with many distractions.

Get adequate sleep. The study of violinists mentioned previously found that the
violinists considered adequate sleep to be an important factor in improving perfor-
mance, and the two best groups of violinists averaged 5 hours more of sleep per
week than the lowest level of violinists. College students are notoriously sleep
deprived. Numerous studies have shown the negative effects of sleep deprivation
on mental and physical performance. (For the amusing and insightful account of
one college student, see A. R. Cohen, Harvard Magazine, Nov.—Dec. 2001, p. 83—
www.harvardmagazine.com/on-line/110190.html.)

Some suggestions to help you prepare for exams are

—_

Learn the meanings of all terms in boldface type.

Memorize all starred equations and their conditions of applicability. (Do not
memorize unstarred equations.)

Make sure you understand all starred equations.

Review your class notes.

Rework homework problems you had difficulty with.

Work some unassigned problems for additional practice.

Make summaries if you have not already done so.

Check that you understand all the concepts mentioned in the end-of-chapter
summaries.

Make sure you can do each type of calculation listed in the summaries.

10. Prepare a practice exam by choosing some relevant homework problems and work
them in the time allotted for the exam.

N

e A

e

My students often ask me whether the fact that they have to learn only the starred
equations means that problems that require the use of unstarred equations will not ap-
pear on exams. My answer is that if an unstarred equation is needed, it will be included
as given information on the exam.

Since, as with all of us, your capabilities for learning and understanding are
finite and the time available to you is limited, it is best to accept the fact that there
will probably be some material you may never fully understand. No one understands
everything fully.

|1.100 SUMMARY

The four branches of physical chemistry are thermodynamics, quantum chemistry, sta-
tistical mechanics, and kinetics.

Thermodynamics deals with the relationships between the macroscopic equilib-
rium properties of a system. Some important concepts in thermodynamics are system
(open versus closed, isolated versus nonisolated; homogeneous versus heterogeneous);



surroundings, walls (rigid versus nonrigid, permeable versus impermeable; adiabatic
versus thermally conducting); equilibrium (mechanical, material, thermal); state func-
tions (extensive versus intensive); phase, and equation of state.

Temperature was defined as an intensive state function that has the same value for
two systems in thermal equilibrium and a different value for two systems not in ther-
mal equilibrium. The setting up of a temperature scale is arbitrary, but we chose to use
the ideal-gas absolute scale defined by Eq. (1.15).

An ideal gas is one that obeys the equation of state PV’ = nRT. Real gases obey
this equation only in the limit of zero density. At ordinary temperatures and pressures,
the ideal-gas approximation will usually be adequate for our purposes. For an ideal gas
mixture, PV = n,RT The partial pressure of gas i in any mixture is P, = x,P, where
the mole fraction of i is x; = n,/n,,.

Differential and integral calculus were reviewed, and some useful partial-derivative
relations were given [Egs. (1.30), (1.32), (1.34), and (1.36)].

The thermodynamic properties « (thermal expansivity) and k (isothermal com-
pressibility) are defined by o = (1/V) (0V/0T)p and k = —(1/V') (dV/dP), for a sys-
tem of fixed composition.

Understanding, rather than mindless memorization, is the key to learning physi-
cal chemistry.

Important kinds of calculations dealt with in this chapter include

e Calculation of P (or V or 7) of an ideal gas or ideal gas mixture using PV = nRT.
e Calculation of the molar mass of an ideal gas using PV = nRT and n = m/M.

*  Calculation of the density of an ideal gas.

*  Calculations involving partial pressures.

e Use of @ or « to find volume changes produced by changes in 7" or P,

« Differentiation and partial differentiation of functions.

* Indefinite and definite integration of functions.

FURTHER READING AND DATA SOURCES

Temperature: Quinn; Shoemaker, Garland, and Nibler, chap. XVIII; McGlashan,
chap. 3; Zemansky and Dittman, chap. 1. Pressure measurement: Rossiter, Hamilton,
and Baetzold, vol. V1, chap. 2. Calculus: C. E. Swartz, Used Math for the First Two
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Years of College Science, Prentice-Hall, 1973.

p, a, and k values: Landolt-Bornstein, 6th ed., vol. 11, part 1, pp. 378-731.

PROBLEMS

Section 1.2

1.1 True or false? (a) A closed system cannot interact with its
surroundings. (b) Density is an intensive property. (¢) The
Atlantic Ocean is an open system. (d) A homogeneous system
must be a pure substance. (¢) A system containing only one
substance must be homogeneous.

1.2 State whether each of the following systems is closed or
open and whether it is isolated or nonisolated: (a) a system en-
closed in rigid, impermeable, thermally conducting walls; (b) a
human being; (¢) the planet earth.

1.3 How many phases are there in a system that consists of
(a) CaCOj4(s), CaO(s), and CO,(g); (b) three pieces of solid
AgBr, one piece of solid AgCl, and a saturated aqueous solu-
tion of these salts.

1.4 Explain why the definition of an adiabatic wall in Sec. 1.2
specifies that the wall be rigid and impermeable.

1.5 The density of Au is 19.3 g/cm? at room temperature and
1 atm. (a) Express this density in kg/m?. (b) If gold is selling for
$800 per troy ounce, what would a cubic meter of it sell for? One
troy ounce = 480 grains, 1 grain = 7355 pound, 1 pound = 453.59 g.

Section 1.4

1.6 True or false? (¢) One gram is Avogadro’s number of
times as heavy as 1 amu. (b) The Avogadro constant N, has no
units. (¢) Mole fractions are intensive properties. (¢) One mole
of water contains Avogadro’s number of water molecules.

1.7 For O,, give (a) the molecular weight; () the molecular
mass; (c) the relative molecular mass; (<) the molar mass.
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1.8 A solution of HCI in water is 12.0% HCI by mass. Find
the mole fractions of HCI and H,O in this solution.

1.9 Calculate the mass in grams of (a) one atom of carbon;
(b) one molecule of water.

1.10 The room-temperature density of Po is 9.20 g/cm? and
its longest-lived isotope has mass number 209. The structure of
solid Po can be described as follows. Imagine a layer of cubes
like Fig. 23.8 but with many more cubes; the edge length of
each cube is taken as equal to the diameter of a Po atom; then
place another cube directly over each cube in the first layer and
aligned with that cube, thereby forming a second layer; then
add cubes directly over the second-layer cubes to form a third
layer; and so on. If one Po atom is put into each cube with
the atomic nucleus at the center of the cube, we have the Po
structure. (a) Find the volume of one mole of Po. (b) Find
the volume of the cube that surrounds one Po atom in the solid.
(¢) Find the diameter of a Po atom. (d) For a spherical nanopar-
ticle of Po whose diameter is 2 nm, find the number of Po
atoms present. (¢) Repeat (d) for a Po spherical nanoparticle of
diameter 100 nm. (/) For a cubic nanoparticle of Po whose edge
length is 2 nm, calculate the percentage of Po atoms that are at
the surface of the particle. (g) Repeat (f) for a Po cubic particle
of edge length 100 nm. (The increasing percentage of atoms at
the surface as the particle size decreases is one reason the prop-
erties of nanomaterials change with size.)

Section 1.5

1.11 True or false? (a) On the Celsius scale, the boiling point
of water is slightly less than 100.00°C. (») Doubling the ab-
solute temperature of an ideal gas at fixed volume and amount
of gas will double the pressure. (¢) The ratio PV/mT is the same
for all gases in the limit of zero pressure. (d) The ratio PV/nT is
the same for all gases in the limit of zero pressure. (e) All ideal
gases have the same density at 25°C and 1 bar. (f) All ideal
gases have the same number of molecules per unit volume at
25°C and 10 bar.

1.12 Do these conversions: () 5.5 m? to cm?; () 1.0 GPa to bar
(where 1 GPa = 10° Pa); (c) 1.000 hPa to torr (where 1 hPa =
10? Pa); (d) 1.5 g/cm? to kg/m>.

1.13 In Fig. 1.2, if the mercury levels in the left and right
arms of the manometer are 30.43 and 20.21 cm, respectively,
above the bottom of the manometer, and if the barometric pres-
sure is 754.6 torr, find the pressure in the system. Neglect tem-
perature corrections to the manometer and barometer readings.

1.14 (a) A seventeenth-century physicist built a water barom-
eter that projected through a hole in the roof of his house so that
his neighbors could predict the weather by the height of the
water. Suppose that at 25°C a mercury barometer reads 30.0 in.
What would be the corresponding height of the column in a
water barometer? The densities of mercury and water at 25°C
are 13.53 and 0.997 g/cm’, respectively. (b) What pressure in
atmospheres corresponds to a 30.0-in. mercury-barometer read-
ing at 25°C at a location where g = 978 cm/s??

1.15 Derive Eq. (1.17) from Eq. (1.18).

1.16 (@) What is the pressure exerted by 24.0 g of carbon
dioxide in a 5.00-L vessel at 0°C? (b) A rough rule of thumb is
that 1 mole of gas occupies 1 ft* at room temperature and pres-
sure (25°C and 1 atm). Calculate the percent error in this rule.
One inch = 2.54 cm.

1.17 A sample of 65 mg of an ideal gas at 0.800 bar pressure
has its volume doubled and its absolute temperature tripled.
Find the final pressure.

1.18 For a certain hydrocarbon gas, 20.0 mg exerts a pressure
of 24.7 torr in a 500-cm? vessel at 25°C. Find the molar mass
and the molecular weight and identify the gas.

1.19 Find the density of N, at 20°C and 0.667 bar.

1.20 For 1.0000 mol of N, gas at 0.00°C, the following vol-
umes are observed as a function of pressure:

| 10000 | 3.0000 | 5.0000
| 22405 | 74614 | 44731

Platm

Viem?

Calculate and plot PV/nT versus P for these three points and ex-
trapolate to P = 0 to evaluate R.

1.21 The measured density of a certain gaseous amine at 0°C
as a function of pressure is

Platm
p/(g/L)

Plot P/p versus P and extrapolate to P = 0 to find an accurate
molecular weight. Identify the gas.

1.22  After 1.60 mol of NH, gas is placed in a 1600-cm® box
at 25°C, the box is heated to 500 K. At this temperature, the
ammonia is partially decomposed to N, and H,, and a pressure
measurement gives 4.85 MPa. Find the number of moles of
each component present at 500 K.

1.23 A student attempts to combine Boyle’s law and Charles’
law as follows. “We have PV = K, and V/T = K,. Equals mul-
tiplied by equals are equal; multiplication of one equation by
the other gives PV*/T = K,K,. The product KK, of two con-
stants is a constant, so PV'%/T is a constant for a fixed amount of
ideal gas.” What is the fallacy in this reasoning?

| 0.2000
| 0279

| 05000
| 0.7080

| 0.8000
| 1.1476

1.24 Prove that the equations PV/T = C, for m constant and
Vim = C, for T and P constant lead to PV/mT = a constant.

1.25 A certain gas mixture is at 3450 kPa pressure and is
composed of 20.0 g of O, and 30.0 g of CO,. Find the CO, par-
tial pressure.

1.26 A 1.00-L bulb of methane at a pressure of 10.0 kPa is
connected to a 3.00-L bulb of hydrogen at 20.0 kPa; both bulbs
are at the same temperature. (a) After the gases mix, what is the
total pressure? (b) What is the mole fraction of each component
in the mixture?

1.27 A student decomposes KCIO; and collects 36.5 cm? of
O, over water at 23°C. The laboratory barometer reads 751 torr.
The vapor pressure of water at 23°C is 21.1 torr. Find the vol-
ume the dry oxygen would occupy at 0°C and 1.000 atm.



1.28 Two evacuated bulbs of equal volume are connected by
a tube of negligible volume. One bulb is placed in a 200-K
constant-temperature bath and the other in a 300-K bath, and
then 1.00 mol of an ideal gas is injected into the system. Find
the final number of moles of gas in each bulb.

1.29 An oil-diffusion pump aided by a mechanical forepump
can readily produce a “vacuum” with pressure 1076 torr.
Various special vacuum pumps can reduce P to 107! torr. At
25°C, calculate the number of molecules per cm® in a gas at
(a) 1 atm; (b) 107 torr; (¢) 10~ torr.

1.30 A certain mixture of He and Ne in a 356-cm® bulb
weighs 0.1480 g and is at 20.0°C and 748 torr. Find the mass
and mole fraction of He present.

1.31 The earth’s radius is 6.37 X 105 m. Find the mass of the
earth’s atmosphere. (Neglect the dependence of g on altitude.)

1.32 (a) If 10°P/bar = 9.4, what is P? (b) If 102T/K = 4.60,
what is 7? (¢) If P/(10° bar) = 1.2, what is P? (d) If 103(K/T) =
3.20, what is 77

1.33 A certain mixture of N, and O, has a density of 1.185 g/L
at 25°C and 101.3 kPa. Find the mole fraction of O, in the mix-
ture. (Hint: The given data and the unknown are all intensive
properties, so the problem can be solved by considering any
convenient fixed amount of mixture.)

1.34 The mole fractions of the main components of dry air at
sea level are xy, = 0.78, x5, = 0.21, x,, = 0.0093, x¢o, =
0.0004. (a) Find the partial pressure of each of these gases in
dry air at 1.00 atm and 20°C. () Find the mass of each of these
gases in a 15 ft X 20 ft X 10 ft room at 20°C if the barometer
reads 740 torr and the relative humidity is zero. Also, find the
density of the air in the room. Which has a greater mass, you or
the air in the room of this problem?

Section 1.6
1.35 On Fig. 1.15, mark all points where df/dx is zero and cir-
cle each portion of the curve where dffdx is negative.

1.36 Let y = x¥* + x — 1. Find the slope of the y-versus-x
curve at x = 1 by drawing the tangent line to the graph at x =
1 and finding its slope. Compare your result with the exact
slope found by calculus.

1.37 Find dldx of (a) 253¢73% (b) 43¢ + 12; (0 In 2x;
(d) 1/(1 — ®; (& ¥(x+ 1); (HIn (1 — e 29; (g sin? 3x.

1.38 (a) Find dy/dx if xy = y — 2. (b) Find d*(x*e)/dx.
(¢ Find dyif y = 5x¥ — 3x+ 2/x — 1.

1.39 Use a calculator to find: (a) lim,, x* for x > 0;
(5) lim,_, (1 + 9

1.40 (a) Evaluate the first derivative of the function y = e* at
x = 2 by using a calculator to evaluate Ay/Ax for Ax = 0.1,
0.01, 0.001, etc. Note the loss of significant figures in Ay as Ax
decreases. If you have a programmable calculator, you might
try programming this problem. (b) Compare your result in
(a) with the exact answer.
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1.41 Find 0/dyof: (a) 5x* + y + sin(axy) + 3; (b) cos (by?2);
(o) xe*”; (d) tan Bx + 1); (¢) 1/(e=¥¥ + 1); (£) f(xg(») h(2).

142 Take (3/07)p, of (a) nRTIP; (b) PInRT? (where R is a
constant).

143 (a) If y = 4% + 6x, find dy. (b) If z = 3x%)3, find dz
(o) If P= nRT!V, where R is a constant and all other quantities
are variables, find dP.

1.44 If cis a constant and all other letters are variables, find
(a) d(PV); (b) d(1/T); (0 d(cT?); (d) d(U + PV).

145 Let z = x°/)®. Evaluate the four second partial deriva-
tives of z check that 9%7/(0x dy) = 9°2(dy 9x).

1.46 (a) For an ideal gas, use an equation like (1.30) to show
that dP = P(n™' dn+ T-! dT — V~! dV) (which can be written
asdinP=dlnn+ dln T— dln V). (b) Suppose 1.0000 mol
of ideal gas at 300.00 K in a 30.000-L vessel has its tempera-
ture increased by 1.00 K and its volume increased by 0.050 L.
Use the result of (a) to estimate the change in pressure, AP
(¢) Calculate A Pexactly for the change in (b) and compare with
the estimate given by dP.

Section 1.7
1.47 Find the molar volume of an ideal gas at 20.0°C and
1.000 bar.

1.48 (a) Write the van der Waals equation (1.39) using the
molar volume instead of V and n. (b) If one uses bars, cubic
centimeters, moles, and kelvins as the units of P, V, n, and T,
give the units of a and of b in the van der Waals equation.

1.49 For a liquid obeying the equation of state (1.40), find
expressions for a and k.

1.50 For H,0 at 50°C and 1 atm, p = 0.98804 g/cm® and k =
4.4 X 10719 Pa~!, (a) Find the molar volume of water at 50°C
and 1 atm. (b) Find the molar volume of water at 50°C and
100 atm. Neglect the pressure dependence of «.

1.51 For an ideal gas: (a) sketch some isobars on a V, -7 dia-
gram; (b) sketch some isochores on a P-T diagram.

1.52 A hypothetical gas obeys the equation of state PV =
nRT(1 + aP), where a is a constant. For this gas: (a) show that
a = 1/Tand k = 1/P(1 + aP); (b) verify that (0P/d 1), = a/k.

1.53 Use the following densities of water as a function of T
and P to estimate «, , and (0F/dT), for water at 25°C and
1 atm: 0.997044 g/cm? at 25°C and 1 atm; 0.996783 g/cm? at
26°C and 1 atm; 0.997092 g/cm? at 25°C and 2 atm.

1.54 By drawing tangent lines and measuring their slopes, use
Fig. 1.14 to estimate for water: (a) a at 100°C and 500 bar;
(b) k at 300°C and 2000 bar.

1.55 For H,0 at 17°C and 1 atm, @ = 1.7 X 107* K~! and
Kk = 4.7 X 107° atm™!. A closed, rigid container is completely
filled with liquid water at 14°C and 1 atm. If the temperature is
raised to 20°C, estimate the pressure in the container. Neglect
the pressure and temperature dependences of « and «.
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1.56 Give a molecular explanation for each of the following
facts. (a) For solids and liquids, k usually decreases with in-
creasing pressure. (b) For solids and liquids, (9x/d T) pis usually
positive.

1.57 Estimate the pressure increase needed to decrease
isothermally by 1% the 1-atm volume of (a) a typical solid
with k = 5 X 1070 atm™!; (b) a typical liquid with k = 1 X
10~* atm™L.

Section 1.8

1.58 (a) Evaluate 37_) (2 + 1). (b) Write the expression
x Vi + %V, + -+ - + x,V, using summation notation. (c) Write
out the individual terms of the double sum 32 3¢ , b,

1.59 Prove the sum identities in (1.50) and (1.51). (Hint:
Write out the individual terms of the sums.)

1.60 Evaluate: (a) [32 @V + 5V?) dV: (b) [3 V! dV;
(0 [ V3 dV: (d) 5% ¥ cos & dx.

1.61 Find (a) [ sin ax dx; (b) [T sin ax dx;
(o) (d/da) [ sinax dx; (d) [ (a/T?) dT.

1.62 For H,0() at 50°C and 1 atm, « = 4.576 X 1074 K™},
Kk = 44.17 X 1078 bar™!, and V,, = 18.2334 cm®/mol. (a) Esti-
mate V},};0 at 52°C and 1 atm and compare the result with the
experimental value 18.2504 cm®mol. Neglect the temperature
dependence of a. (b) Estimate V,}; o at 50°C and 200 bar and
compare with the experimental value 18.078 cm3/mol.

1.63 State whether each of the following is a number or is a
function of x: (a) [e* dx; (b) [%e* dx; (c) =25 e*.

1.64 Izn which of2 the following is ¢ a dummy variable?
(@) fe' dt (b) [3e" dr (o = .

1.65 (a) If df(x)/dx = 2x° + 3% find £(x). (b) If [ f(x) dx =
3x8 + C, where Cis a constant, find f(x).

1.66 (a) Use a programmable calculator or a computer to
obtain approximations to the integral /3 x* dx by evaluating the

sum (1.58) for Ax = 0.1, 0.01, and 0.001; take the x, values at
the left end of each subinterval. Compare your results with the
exact value. (b) Use (1.58) with Ax = 0.01 to obtain an ap-
proximate value of [ $ e dx.

1.67 () Find log,, (4.2 X 10'75). (b) Find In (6.0 X 10-200),
(0 If log,, y = —138.265, find y. (d) If In z = 260.433, find

1.68 Find (a) log, 32; (b) logys 1.

General

1.69 Classify each property as intensive or extensive; (a) tem-
perature; (b) mass; (¢) density; (d) electric field strength; (e) «;
(f) mole fraction of a component.

1.70 For O, gas in thermal equilibrium with boiling sulfur,
the following values of PV, versus P are found:

Pltorr
PV, /(L atm mol 1)

| 1000 |
| 59.03

500 | 250
| 5897 | 5893

(Since Phas units of pressure, Pltorr is dimensionless.) From a
plot of these data, find the boiling point of sulfur.

1.71 True or false? (a) Every isolated system is closed.
(b) Every closed system is isolated. (¢) For a fixed amount of
an ideal gas, the product PV remains constant during any
process. (d) The pressure of a nonideal gas mixture is equal
to the sum of the partial pressures defined by P, = x,P.
(e) dyldx is equal to Ay/Ax for all functions y. (f) dy/dx is
equal to Ay/Ax only for functions that vary linearly with x
according to y = mx + b. (g) In (b/la) = —In (a/b). (h) If In x
is negative, then x lies between 0 and 1. () Ideal-gas
isotherms farther away from the axes of a P-versus- I/ plot
correspond to higher temperatures. () The partial derivative
(0P/9T), is an infinitesimally small quantity. (k) If G is a
function of Tand P, then dG = (3G/9T)p + (3G/9P) 1.



The First Law of
Thermodynamics

Chapter 1 introduced some of the vocabulary of thermodynamics and defined the im-
portant state function temperature. Another key state function in thermodynamics is
the internal energy U, whose existence is postulated by the first law of thermodynam-
ics; this law is the main topic of Chapter 2. The first law states that the total energy of
system plus surroundings remains constant (is conserved). Closely related to the in-
ternal energy is the state function enthalpy H, defined in Sec. 2.5. Other important
state functions introduced in this chapter are the heat capacities at constant volume and
at constant pressure, Cj, and C,, (Sec. 2.6), which give the rates of change of the inter-
nal energy and enthalpy with temperature [Eq. (2.53)]. As a preliminary to the main
work of this chapter, Sec. 2.1 reviews classical mechanics.

The internal energy of a thermodynamic system is the sum of the molecular ener-
gies, as will be discussed in detail in Sec. 2.11. Energy is a key concept in all areas of
physical chemistry. In quantum chemistry, a key step to calculating molecular proper-
ties is solving the Schrddinger equation, which is an equation that gives the allowed
energy levels of a molecule. In statistical mechanics, the key to evaluating thermody-
namic properties from molecular properties is to find something called the partition
function, which is a certain sum over energy levels of the system. The rate of a chem-
ical reaction depends strongly on the activation energy of the reaction. More generally,
the kinetics of a reaction is determined by something called the potential-energy
surface of the reaction.

The importance of energy in the economy is obvious. World consumption of
energy increased from 3.0 X 10%° J in 1980 to 4.9 X 10?° J in 2005, with fossil fuels
(oil, coal, natural gas) supplying 86% of the 2005 total.

Energy transformations play a key role in the functioning of biological organisms.

2.1 CLASSICAL MECHANICS

Two important concepts in thermodynamics are work and energy. Since these con-
cepts originated in classical mechanics, we review this subject before continuing with
thermodynamics.

Classical mechanics (first formulated by the alchemist, theologian, physicist, and
mathematician Isaac Newton) deals with the laws of motion of macroscopic bodies
whose speeds are small compared with the speed of light c. For objects with speeds
not small compared with ¢, one must use Einstein’s relativistic mechanics. Since the
thermodynamic systems we consider will not be moving at high speeds, we need not
worry about relativistic effects. For nonmacroscopic objects (for example, electrons),
one must use quantum mechanics. Thermodynamic systems are of macroscopic size,
so we shall not need quantum mechanics at this point.
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Figure 2.1

The displacement vector r from
the origin to a particle.

Newton’s Second Law
The fundamental equation of classical mechanics is Newton’s second law of motion:

F = ma @.n*

where m is the mass of a body, F is the vector sum of all forces acting on it at some
instant of time, and a is the acceleration the body undergoes at that instant. F and a
are vectors, as indicated by the boldface type. Vectors have both magnitude and di-
rection. Scalars (for example, m) have only a magnitude. To define acceleration, we
set up a coordinate system with three mutually perpendicular axes x, y, and z. Let r be
the vector from the coordinate origin to the particle (Fig. 2.1). The particle’s velocity v
is the instantaneous rate of change of its position vector r with respect to time:

V= dr/d[ (2.2)*

The magnitude (length) of the vector v is the particle’s speed v. The particle’s accel-
eration a is the instantaneous rate of change of its velocity:

a = dv/dt = d’r/dt’ (2.3)*

A vector in three-dimensional space has three components, one along each of the
coordinate axes. Equality of vectors means equality of their corresponding compo-
nents, so a vector equation is equivalent to three scalar equations. Thus Newton’s sec-
ond law F = ma is equivalent to the three equations

F, = ma,, F, = ma,, F, = ma, (2.4)

where F, and a, are the x components of the force and the acceleration. The x compo-
nent of the position vector r is simply x, the value of the particle’s x coordinate.
Therefore (2.3) gives a, = d*x/di?, and (2.4) becomes
" d*x " d*y " d’z 2.5)
x - m—=, = m—, - M :
ar g dar* dar*
The weight W of a body is the gravitational force exerted on it by the earth. If g is
the acceleration due to gravity, Newton’s second law gives

W = mg (2.6)

Units

In 1960 the General Conference on Weights and Measures recommended a single sys-
tem of units for use in science. This system is called the International System of
Units (Systeme International d’Unités), abbreviated SI. In mechanics, the SI uses me-
ters (m) for length, kilograms (kg) for mass, and seconds (s) for time. A force that pro-
duces an acceleration of one meter per second” when applied to a one-kilogram mass
is defined as one newton (N):

I N = 1kgm/s? 2.7)

If one were to adhere to SI units, pressures would always be given in
newtons/meter? (pascals). However, it seems clear that many scientists will continue
to use such units as atmospheres and torrs for many years to come. The current scien-
tific literature increasingly uses SI units, but since many non-SI units continue to be
used, it is helpful to be familiar with both SI units and commonly used non-SI units.
SI units for some quantities introduced previously are cubic meters (m?) for volume,
kg/m? for density, pascals for pressure, kelvins for temperature, moles for amount of
substance, and kg/mol for molar mass.



Work

Suppose a force F acts on a body while the body undergoes an infinitesimal displace-
ment dx in the x direction. The infinitesimal amount of work dw done on the body by
the force F is defined as

dw =F, dx (2.8)*

where £ is the component of the force in the direction of the displacement. If the
infinitesimal displacement has components in all three directions, then

dw= F.dx + F,dy + F.dz (2.9)

Consider now a noninfinitesimal displacement. For simplicity, let the particle be
moving in one dimension. The particle is acted on by a force F(x) whose magnitude
depends on the particle’s position. Since we are using one dimension, F has only one
component and need not be considered a vector. The work w done by F during
displacement of the particle from x, to x, is the sum of the infinitesimal amounts of
work (2.8) done during the displacement: w = 2, F(x) dx. But this sum of infinitesi-
mal quantities is the definition of the definite integral [Eq. (1.59)], so

w= rF(x)dx (2.10)

In the special case that F'is constant during the displacement, (2.10) becomes
w = F(x, — x;) for F constant (2.11)

From (2.8), the units of work are those of force times length. The SI unit of work
is the joule (J):

1J=1Nm = 1 kgm?/s’ (2.12)

Power P is defined as the rate at which work is done. If an agent does work dw in
time dt, then P = dw/dt. The SI unit of power is the watt (W): 1 W =1 J/s.

Mechanical Energy

We now prove the work—energy theorem. Let F be the total force acting on a particle,
and let the particle move from point 1 to point 2. Integration of (2.9) gives as the total
work done on the particle:

2 2 2
w = J F.dx + J F,dy + J F.dz (2.13)
1 1 1

Newton’s second law gives F. = ma, = m(dv./dt). Also, dv./dt = (dv /dx) (dx/dt) =
(dv,/dx)v,. Therefore F, = mv,(dv,/dx), with similar equations for F, and F,. We have
F.dx = mv_ dv,, and (2.13) becomes

2 2 2
w = J muv, dv, + J mu, dv, + J muv, dv,
1 1 1

_ 1 2 2 2 1 2 2 2
w = im(UXZ + Uy2 + UZZ) - jm(le + vyl + Uzl) (214)

We now define the kinetic energy K of the particle as
K =3mv* = ym(v? + vl + v?) (2.15)*
The right side of (2.14) is the final kinetic energy K, minus the initial kinetic energy K:
w=K, — K, = AK one-particle syst. (2.16)
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where AK is the change in kinetic energy. The work—energy theorem (2.16) states that
the work done on the particle by the force acting on it equals the change in kinetic
energy of the particle. It is valid because we defined kinetic energy in such a manner
as to make it valid.

Besides kinetic energy, there is another kind of energy in classical mechanics.
Suppose we throw a body up into the air. As it rises, its kinetic energy decreases,
reaching zero at the high point. What happens to the kinetic energy the body loses as
it rises? It proves convenient to introduce the notion of a field (in this case, a gravita-
tional field) and to say that the decrease in kinetic energy of the body is accompanied
by a corresponding increase in the potential energy of the field. Likewise, as the body
falls back to earth, it gains kinetic energy and the gravitational field loses a cor-
responding amount of potential energy. Usually, we don’t refer explicitly to the field
but simply ascribe a certain amount of potential energy to the body itself, the amount
depending on the location of the body in the field.

To put the concept of potential energy on a quantitative basis, we proceed as fol-
lows. Let the forces acting on the particle depend only on the particle’s position and
not on its velocity, or the time, or any other variable. Such a force F with F, =
F(x,y,2), F, = F(x,,2), F, = F(x, , z) is called a conservative force, for a reason
to be seen shortly. Examples of conservative forces are gravitational forces, electrical
forces, and the Hooke’s law force of a spring. Some nonconservative forces are air
resistance, friction, and the force you exert when you kick a football. For a conserva-
tive force, we define the potential energy V(x, y, z) as a function of x, y, and z whose
partial derivatives satisfy

14 14 14
—=-F, —=-F — = - (2.17)
0x )y
Since only the partial derivatives of " are defined, V itself has an arbitrary additive
constant. We can set the zero level of potential energy anywhere we please.
From (2.13) and (2.17), it follows that

2 2 2
14 av av
wz—de—J dy—j — dz (2.18)
1 1 1

Since dV = (dV/ox) dx + (dV/dy) dy + (dV/dz) dz [Eq. (1.30)], we have
2
1

But Eq. (2.16) gives w = K, — K|. Hence K, — K, =V, — V,, or
Kl + Vl = K2 + V2 (220)

When only conservative forces act, the sum of the particle’s kinetic energy and poten-
tial energy remains constant during the motion. This is the law of conservation of

mechanical energy. Using E, ., for the total mechanical energy, we have
E

mech = K+ V (2.21)

If only conservative forces act, £, .., remains constant.

What is the potential energy of an object in the earth’s gravitational field? Let the
x axis point outward from the earth with the origin at the earth’s surface. We have
F, = —mg, F, = F, = 0. Equation (2.17) gives dV/ox = mg, dV/dy = 0 = dV/oz.
Integration gives V' = mgx + C, where C is a constant. (In doing the integration, we
assumed the object’s distance above the earth’s surface was small enough for g to be

considered constant.) Choosing the arbitrary constant as zero, we get

V = mgh (2.22)



where /£ is the object’s altitude above the earth’s surface. As an object falls to earth, its
potential energy mgh decreases and its kinetic energy smv? increases. Provided the
effect of air friction is negligible, the total mechanical energy K + V remains constant
as the object falls.

We have considered a one-particle system. Similar results hold for a many-particle
system. (See H. Goldstein, Classical Mechanics, 2d ed., Addison-Wesley, 1980,
sec. 1-2, for derivations.) The kinetic energy of an n-particle system is the sum of the
kinetic energies of the individual particles:

1 n
K=K1+K2+'--+Kn=5§mil}? (223)
i=1

Let the particles exert conservative forces on one another. The potential energy V of
the system is not the sum of the potential energies of the individual particles. Instead,
V'is a property of the system as a whole. 7 turns out to be the sum of contributions due
to pairwise interactions between particles. Let V; be the contribution to V" due to the
forces acting between particles i and j. One finds

V=> >V (2.24)

i j>i

The double sum indicates that we sum over all pairs of i and j values except those with i
equal to or greater than j. Terms with i = j are omitted because a particle does not exert
a force on itself. Also, only one of the terms V;, and V,, is included, to avoid counting
the interaction between particles 1 and 2 twice. For example, in a system of three parti-
cles, V=V, + V5 + V5. If external forces act on the particles of the system, their con-
tributions to /" must also be included. [V, is defined by equations similar to (2.17).]

One finds that K + V' = E,_ ., is constant for a many-particle system with only
conservative forces acting.

The mechanical energy K + V'is a measure of the work the system can do. When
a particle’s kinetic energy decreases, the work—energy theorem w = AK [Eq. (2.16)]
says that w, the work done on it, is negative; that is, the particle does work on the sur-
roundings equal to its loss of kinetic energy. Since potential energy is convertible to
kinetic energy, potential energy can also be converted ultimately to work done on the
surroundings. Kinetic energy is due to motion. Potential energy is due to the positions
of the particles.

EXAMPLE 2.1 Work

A woman slowly lifts a 30.0-kg object to a height of 2.00 m above its initial
position. Find the work done on the object by the woman, and the work done by
the earth.
The force exerted by the woman equals the weight of the object, which from
Eq. (2.6) is F = mg = (30.0 kg) (9.81 m/s?) = 294 N. From (2.10) and (2.11),
the work she does on the object is
w = J’ F(x)dx = FAx = (294 N)(2.00 m) = 588 J

X1

The earth exerts an equal and opposite force on the object compared with the
lifter, so the earth does —588 J of work on the object. This work is negative
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—_— System

X

Figure 2.2

A system confined by a piston.

because the force and the displacement are in opposite directions. The total work
done on the object by all forces is zero. The work—energy theorem (2.16) gives
w = AK = 0, in agreement with the fact that the object started at rest and ended
at rest. (We derived the work—energy theorem for a single particle, but it also
applies to a perfectly rigid body.)

Exercise

A sphere of mass m is attached to a spring, which exerts a force /¥ = —kx on
the sphere, where & (called the force constant) is a constant characteristic of the
spring and x is the displacement of the sphere from its equilibrium position (the
position where the spring exerts no force on the sphere). The sphere is initially at
rest at its equilibrium position. Find the expression for the work w done by some-
one who slowly displaces the sphere to a final distance d from its equilibrium
position. Calculate w if k = 10 N/m and d = 6.0 cm. (dnswer: 3kd?, 0.018 I.)

2.2 1 P-V WORK

Work in thermodynamics is defined as in classical mechanics. When part of the sur-
roundings exerts a macroscopically measurable force F on matter in the system while
this matter moves a distance dx at the point of application of F, then the surroundings
has done work dw = F, dx [Eq. (2.8)] on the system, where F| is the component of F
in the direction of the displacement. F may be a mechanical, electrical, or magnetic
force and may act on and displace the entire system or only a part of the system. When
F_ and the displacement dx are in the same direction, positive work is done on the
system: dw > 0. When F and dx are in opposite directions, dw is negative.

Reversible P-V Work
The most common way work is done on a thermodynamic system is by a change in
the system’s volume. Consider the system of Fig. 2.2. The system consists of the mat-
ter contained within the piston and cylinder walls and has pressure P. Let the external
pressure on the frictionless piston also be P. Equal opposing forces act on the piston,
and it is in mechanical equilibrium. Let x denote the piston’s location. If the external
pressure on the piston is now increased by an infinitesimal amount, this increase will
produce an infinitesimal imbalance in forces on the piston. The piston will move
inward by an infinitesimal distance dx, thereby decreasing the system’s volume and
increasing its pressure until the system pressure again balances the external pressure.
During this infinitesimal process, which occurs at an infinitesimal rate, the system will
be infinitesimally close to equilibrium.

The piston, which is part of the surroundings, exerted a force, which we denote by
F_, on matter in the system at the system—piston boundary while this matter moved a
distance dx. The surroundings therefore did work dw = F, dx on the system. Let /" be
the magnitude of the force exerted by the system on the piston. Newton’s third law
(action = reaction) gives /' = F,. The definition P = F/A of the system’s pressure P
gives F, = ' = PA, where A is the piston’s cross-sectional area. Therefore the work
dw = F_dx done on the system in Fig. 2.2 is

dw = PA dx (2.25)

The system has cross-sectional area 4 and length / = b — x (Fig. 2.2), where x is the
piston’s position and b is the position of the fixed end of the system. The volume of



this cylindrical system is V' = A/ = Ab — Ax. The change in system volume when the
piston moves by dx is dV = d(Ab — Ax) = —A dx. Equation (2.25) becomes

dw,., = —P dV closed system, reversible process (2.26)*

The subscript rev stands for reversible. The meaning of “reversible” will be discussed
shortly. We implicitly assumed a closed system in deriving (2.26). When matter is trans-
ported between system and surroundings, the meaning of work becomes ambiguous; we
shall not consider this case. We derived (2.26) for a particular shape of system, but it can
be shown to be valid for every system shape (see Kirkwood and Oppenheim, sec. 3-1).

We derived (2.26) by considering a contraction of the system’s volume (dV < 0).
For an expansion (dV > 0), the piston moves outward (in the negative x direction), and
the displacement dx of the matter at the system—piston boundary is negative (dx < 0).
Since F, is positive (the force exerted by the piston on the system is in the positive x
direction), the work dw = F dx done on the system by the surroundings is negative
when the system expands. For an expansion, the system’s volume change is still given
by dV = —A dx (where dx < 0 and dV > 0), and (2.26) still holds.

In a contraction, the work done on the system is positive (dw > 0). In an expan-
sion, the work done on the system is negative (dw < 0). (In an expansion, the work
done on the surroundings is positive.)

So far we have considered only an infinitesimal volume change. Suppose we carry
out an infinite number of successive infinitesimal changes in the external pressure. At
each such change, the system’s volume changes by d} and work —P dV is done on the
system, where P is the current value of the system’s pressure. The total work w done
on the system is the sum of the infinitesimal amounts of work, and this sum of infin-
itesimal quantities is the following definite integral:

2
Wiey = — J PdVv closed syst., rev. proc. (2.27)
1

where 1 and 2 are the initial and final states of the system, respectively.

The finite volume change to which (2.27) applies consists of an infinite number
of infinitesimal steps and takes an infinite amount of time to carry out. In this process,
the difference between the pressures on the two sides of the piston is always infinites-
imally small, so finite unbalanced forces never act and the system remains infini-
tesimally close to equilibrium throughout the process. Moreover, the process can be
reversed at any stage by an infinitesimal change in conditions, namely, by infinitesi-
mally changing the external pressure. Reversal of the process will restore both system
and surroundings to their initial conditions.

A reversible process is one where the system is always infinitesimally close to
equilibrium, and an infinitesimal change in conditions can reverse the process to
restore both system and surroundings to their initial states. A reversible process is
obviously an idealization.

Equations (2.26) and (2.27) apply only to reversible expansions and contractions.
More precisely, they apply to mechanically reversible volume changes. There could be
a chemically irreversible process, such as a chemical reaction, occurring in the system
during the expansion, but so long as the mechanical forces are only infinitesimally
unbalanced, (2.26) and (2.27) apply.

The work (2.27) done in a volume change is called P-V work. Later on, we shall
deal with electrical work and work of changing the system’s surface area, but for now,
only systems with P-J work will be considered.

We have defined the symbol w to stand for work done on the system by the sur-
roundings. Some texts use w to mean work done by the system on its surroundings.
Their w is the negative of ours.
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The work w done on the system in
a reversible process (the heavy
lines) equals minus the shaded
area under the P-versus-J curve.
The work depends on the process
used to go from state 1 to state 2.

Line Integrals

The integral [2 P dV in (2.27) is not an ordinary integral. For a closed system of
fixed composition, the system’s pressure P is a function of its temperature and volume:
P = P(T, V). To calculate w,,,, we must evaluate the negative of

2
J P(T, V)dV (2.28)
1

The integrand P(T, V) is a function of two independent variables 7' and V. In an ordinary
definite integral, the integrand is a function of one variable, and the value of the ordinary
definite integral [ f(x) dx is determined once the function f and the limits @ and b are
specified. For example, [} x? dx = 33/3 — 13/3 = 26/3. In contrast, in [ P(T, V) dV,
both of the independent variables 7 and V' may change during the volume-change
process, and the value of the integral depends on how 7" and V vary. For example, if the
system is an ideal gas, then P = nRT/V and [% P(T, V) dV = nR [% (T/V) dV. Before we
can evaluate [? (7/V) dV, we must know how both T and ¥ change during the process.

The integral (2.28) is called a line integral. Sometimes the letter L is put under
the integral sign of a line integral. The value of the line integral (2.28) is defined as
the sum of the infinitesimal quantities P(7, V') dV for the particular process used to go
from state 1 to state 2. This sum equals the area under the curve that plots P versus V.
Figure 2.3 shows three of the many possible ways in which we might carry out a
reversible volume change starting at the same initial state (state 1 with pressure P, and
volume /) and ending at the same final state (state 2).

In process (a), we first hold the volume constant at V; and reduce the pressure
from P, to P, by cooling the gas. We then hold the pressure constant at P, and heat the
gas to expand it from V| to V,. In process (), we first hold P constant at P, and heat
the gas until its volume reaches V,. Then we hold V' constant at /, and cool the gas
until its pressure drops to P,. In process (c), the independent variables /" and 7 vary in
an irregular way, as does the dependent variable P.

For each process, the integral [2 P dV equals the shaded area under the P-versus-
V curve. These areas clearly differ, and the integral [? P dV has different values for
processes (a), (b), and (c). The reversible work w,, = — % P dV thus has different val-
ues for each of the processes (a), (b), and (c). We say that w,,, (Which equals minus
the shaded area under the P-versus-} curve) depends on the path used to go from state
1 to 2, meaning that it depends on the specific process used. There are an infinite num-
ber of ways of going from state 1 to state 2, and w,, can have any positive or negative
value for a given change of state.

The plots of Fig. 2.3 imply pressure equilibrium within the system during the
process. In an irreversible expansion (see after Example 2.2), the system may have no
single well-defined pressure, and we cannot plot such a process on a P-} diagram.

EXAMPLE 2.2 P-Vwork

Find the work w,,, for processes (a) and (b) of Fig. 2.3 if P, = 3.00 atm, V|, =
500 cm?, P, = 1.00 atm, and ¥, = 2000 cm?. Also, find w,,, for the reverse of
process (a).

We have w,,, = —J? P dV. The line integral [? P dV equals the area under

rev
the P-versus-V curve. In Fig. 2.3a, this area is rectangular and equals

(V, = V)P, = (2000 cm® — 500 ¢cm?)(1.00 atm) = 1500 cm?® atm

v = — 1500 cm® atm. The units cm® atm are not customarily used for
work, so we shall convert to joules by multiplying and dividing by the values of the

Hence w,
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gas constant R = 8.314 J/(mol K) and R = 82.06 cm? atm/(mol K) [Egs. (1.19) P-V Work
and (1.20)]:

; 8314 Jmol 'K™!
Wy = — 1500 cm” atm = —152]

82.06 cm® atm mol ™' K™

An alternative procedure is to note that no work is done during the constant-
volume part of process (a); all the work is done during the second step of the
process, in which P is held constant at P,. Therefore

£

Vi

2 V, v,
Wiey = —J Pdv = —J Py dV = —PZJ dv = —P,y
1 v, v

= —Py(V, — V}) = —(1.00 atm)(1500 cm®) = —1527

Similarly, we find for process (b) that w = —4500 cm? atm = —456 J (see
the exercise in this example).

Processes (a) and (b) are expansions. Hence the system does positive work
on its surroundings, and the work w done on the system is negative in these
processes.

For the reverse of process (a), all the work is done during the first step, during
which P is constant at 1.00 atm and ¥ starts at 2000 cm? and ends at 500 cm?. Hence
w = —[3%0m (1,00 atm) dV = —(1.00 atm)(500 cm? — 2000 cm?) = 152 J.

Exercise
Find w,, for process (b) of Fig. 2.3 using the P,, V,, P,, V, values given for

rev

process (a). (Answer: —4500 cm?® atm = —456 J.)

Irreversible P-V Work
The work w in a mechanically irreversible volume change sometimes cannot be cal-
culated with thermodynamics.

For example, suppose the external pressure on the piston in Fig. 2.2 is suddenly reduced
by a finite amount and is held fixed thereafter. The inner pressure on the piston is then
greater than the outer pressure by a finite amount, and the piston is accelerated outward.
This initial acceleration of the piston away from the system will destroy the uniform pres-
sure in the enclosed gas. The system’s pressure will be lower near the piston than farther
away from it. Moreover, the piston’s acceleration produces turbulence in the gas. Thus we
cannot give a thermodynamic description of the state of the system.

We have dw = F dx. For P-V work, F is the force at the system—surroundings bound-
ary, which is where the displacement dx is occurring. This boundary is the inner face of
the piston, so dw,., = —Pg,s dV, where P is the pressure the system exerts on the inner
face of the piston. (By Newton’s third law, P, is also the pressure the piston’s inner face
exerts on the system.) Because we cannot use thermodynamics to calculate P ¢ during the
turbulent, irreversible expansion, we cannot find dw;,, from thermodynamics.

The law of conservation of energy can be used to show that, for a frictionless piston

(Prob. 2.22),
dwirrev = _Pext av — deist (229)
where P, is the external pressure on the outer face of the piston and dK ;, is the infinitesimal

change in piston kinetic energy. The integrated form of (2.29) is w; ., = —J} Py dV — AK,

irrev ext pist*
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If we wait long enough, the piston’s kinetic energy will be dissipated by the internal friction
(viscosity—see Sec. 15.3) in the gas. The gas will be heated, and the piston will eventually
come to rest (perhaps after undergoing oscillations). Once the piston has come to rest, we
have AK; = 0 — 0 = 0, since the piston started and ended at rest. We then have w;,, =
—[? P, dV. Hence we can find w,,, after the piston has come to rest. If, however, part of the
piston’s kinetic energy is transferred to some other body in the surroundings before the piston
comes to rest, then thermodynamics cannot calculate the work exchanged between system and
surroundings. For further discussion, see D. Kivelson and 1. Oppenheim, J. Chem. Educ., 43,
233 (1966); G. L. Bertrand, ibid., 82, 874 (2005); E. A. Gislason and N. C. Craig, ibid., 84,

499 (2007).

Summary
For now, we shall deal only with work done due to a volume change. The work done

on a closed system in an infinitesimal mechanically reversible process is dw,, =

—P dV. The work w,,, = — [? P dV depends on the path (the process) used to go from

rev

the initial state 1 to the final state 2.

(2.3 HEAT

When two bodies at unequal temperatures are placed in contact, they eventually reach
thermal equilibrium at a common intermediate temperature. We say that heat has
flowed from the hotter body to the colder one. Let bodies 1 and 2 have masses m, and
m, and initial temperatures 7' and T, with 7, > T; let 7;-be the final equilibrium tem-
perature. Provided the two bodies are isolated from the rest of the universe and no
phase change or chemical reaction occurs, one experimentally observes the following
equation to be satisfied for all values of 7} and 75:

mycy(Ty — Tf) = mlcl(Tf_ T))=gq (2.30)

where ¢, and c, are constants (evaluated experimentally) that depend on the composi-
tion of bodies 1 and 2. We call ¢, the specific heat capacity (or specific heat) of body
1. We define ¢, the amount of heat that flowed from body 2 to body 1, as equal to
mycy(Ty — T)).

The unit of heat commonly used in the nineteenth and early twentieth centuries
was the calorie (cal), defined as the quantity of heat needed to raise one gram of
water from 14.5°C to 15.5°C at 1 atm pressure. (This definition is no longer used,
as we shall see in Sec. 2.4.) By definition, ¢y = 1.00 cal/(g °C) at 15°C and 1 atm.
Once the specific heat capacity of water has been defined, the specific heat capacity
¢, of any other substance can be found from (2.30) by using water as substance 1.
When specific heats are known, the heat ¢ transferred in a process can then be cal-
culated from (2.30).

Actually, (2.30) does not hold exactly, because the specific heat capacities of sub-
stances are functions of temperature and pressure. When an infinitesimal amount of
heat dg, flows at constant pressure P into a body of mass m and specific heat capac-
ity at constant pressure ¢, the body’s temperature is raised by d7 and

dgp = mcp dT (2.31)

where ¢, is a function of 7"and P. Summing up the infinitesimal flows of heat, we get
the total heat that flowed as a definite integral:

T
qp = mJ cp(T) dT closed syst., P const. (2.32)
T,

1



The pressure dependence of ¢, was omitted because P is held fixed for the process.
The quantity mcp is the heat capacity at constant pressure Cp of the body: Cp = mcp.
From (2.31) we have

Cp = dgp/dT (2.33)

Equation (2.30) is more accurately written as
T, T,
mzf cp(T) dT = mlJ cp(T) dT = qp (2.34)
Ty T

If the dependence of ¢p, and cp; on T is negligible, (2.34) reduces to (2.30).

We gave examples in Sec. 2.2 of reversible and irreversible ways of doing work
on a system. Likewise, heat can be transferred reversibly or irreversibly. A reversible
transfer of heat requires that the temperature difference between the two bodies be
infinitesimal. When there is a finite temperature difference between the bodies, the heat
flow is irreversible.

Two bodies need not be in direct physical contact for heat to flow from one to the
other. Radiation transfers heat between two bodies at different temperatures (for ex-
ample, the sun and the earth). The transfer occurs by emission of electromagnetic
waves by one body and absorption of these waves by the second body. An adiabatic
wall must be able to block radiation.

Equation (2.32) was written with the implicit assumption that the system is closed
(m fixed). As is true for work, the meaning of heat is ambiguous for open systems.
(See R. Haase, Thermodynamics of Irreversible Processes, Addison-Wesley, 1969,
pp- 1721, for a discussion of open systems.)

2.4/l THE FIRST LAW OF THERMODYNAMICS

As arock falls toward the earth, its potential energy is transformed into kinetic energy.
When it hits the earth and comes to rest, what has happened to its energy of motion?
Or consider a billiard ball rolling on a billiard table. Eventually it comes to rest. Again,
what happened to its energy of motion? Or imagine that we stir some water in a
beaker. Eventually the water comes to rest, and we again ask: What happened to its
energy of motion? Careful measurement will show very slight increases in the tem-
peratures of the rock, the billiard ball, and the water (and in their immediate sur-
roundings). Knowing that matter is composed of molecules, we find it easy to believe
that the macroscopic kinetic energies of motion of the rock, the ball, and the water
were converted into energy at the molecular level. The average molecular transla-
tional, rotational, and vibrational energies in the bodies were increased slightly, and
these increases were reflected in the temperature rises.

We therefore ascribe an internal energy U to a body, in addition to its macroscopic
kinetic energy K and potential energy V, discussed in Sec. 2.1. This internal energy con-
sists of: molecular translational, rotational, vibrational, and electronic energies; the rel-
ativistic rest-mass energy m,c* of the electrons and the nuclei; and potential energy of
interaction between the molecules. These energies are discussed in Sec. 2.11.

The total energy E of a body is therefore

E=K+V+U (2.35)

where K and J are the macroscopic (not molecular) kinetic and potential energies of
the body (due to motion of the body through space and the presence of fields that act
on the body) and U is the internal energy of the body (due to molecular motions and
intermolecular interactions). Since thermodynamics is a macroscopic science, the
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development of thermodynamics requires no knowledge of the nature of U. All that is
needed is some means of measuring the change in U for a process. This will be pro-
vided by the first law of thermodynamics.

In most applications of thermodynamics that we shall consider, the system will be
at rest and external fields will not be present. Therefore, K and ¥ will be zero, and the
total energy E will be equal to the internal energy U. (The effect of the earth’s gravi-
tational field on thermodynamic systems is usually negligible, and gravity will usually
be ignored; see, however, Sec. 14.8.) Chemical engineers often deal with systems of
flowing fluids; here, K # 0.

With our present knowledge of the molecular structure of matter, we take it for
granted that a flow of heat between two bodies involves a transfer of internal energy
between them. However, in the eighteenth and nineteenth centuries the molecular the-
ory of matter was controversial. The nature of heat was not well understood until about
1850. In the late 1700s, most scientists accepted the caloric theory of heat. (Some stu-
dents still do, unhappily.) Caloric was a hypothetical fluid substance present in matter
and supposed to flow from a hot body to a cold one. The amount of caloric lost by the
hot body equaled the amount gained by the cold body. The total amount of caloric was
believed to be conserved in all processes.

Strong evidence against the caloric theory was provided by Count Rumford in
1798. In charge of the army of Bavaria, he observed that, in boring a cannon, a virtu-
ally unlimited amount of heating was produced by friction, in contradiction to the
caloric-theory notion of conservation of heat. Rumford found that a cannon borer
driven by one horse for 2.5 hr heated 27 Ib of ice-cold water to its boiling point.
Addressing the Royal Society of London, Rumford argued that his experiments had
proved the incorrectness of the caloric theory.

Rumford began life as Benjamin Thompson of Woburn, Massachusetts. At 19 he married
a wealthy widow of 30. He served the British during the American Revolution and settled
in Europe after the war. He became Minister of War for Bavaria, where he earned extra
money by spying for the British. In 1798 he traveled to London, where he founded the
Royal Institution, which became one of Britain’s leading scientific laboratories. In 1805 he
married Lavoisier’s widow, adding further to his wealth. His will left money to Harvard to
establish the Rumford chair of physics, which still exists.

Despite Rumford’s work, the caloric theory held sway until the 1840s. In 1842
Julius Mayer, a German physician, noted that the food that organisms consume goes
partly to produce heat to maintain body temperature and partly to produce mechanical
work performed by the organism. He then speculated that work and heat were both
forms of energy and that the total amount of energy was conserved. Mayer’s argu-
ments were not found convincing, and it remained for James Joule to deal the death
blow to the caloric theory.

Joule was the son of a wealthy English brewer. Working in a laboratory adjacent to
the brewery, Joule did experiments in the 1840s showing that the same changes produced
by heating a substance could also be produced by doing mechanical work on the sub-
stance, without transfer of heat. His most famous experiment used descending weights
to turn paddle wheels in liquids. The potential energy of the weights was converted to
kinetic energy of the liquid. The viscosity (internal friction) of the liquid then converted
the liquid’s kinetic energy to internal energy, increasing the temperature. Joule found
that to increase the temperature of one pound of water by one degree Fahrenheit requires
the expenditure of 772 foot-pounds of mechanical energy. Based on Joule’s work, the
first clear convincing statement of the law of conservation of energy was published by
the German surgeon, physiologist, and physicist Helmholtz in 1847.

The internal energy of a system can be changed in several ways. Internal energy
is an extensive property and thus depends on the amount of matter in the system. The



internal energy of 20 g of H,O at a given 7 and P is twice the internal energy of 10 g
of H,O at that 7" and P. For a pure substance, the molar internal energy U, is
defined as

U, =Uln (2.36)

where # is the number of moles of the pure substance. U, is an intensive property that
depends on P and T.
We usually deal with closed systems. Here, the system’s mass is held fixed.
Besides changing the mass of a system by adding or removing matter, we can
change the energy of a system by doing work on it or by heating it. The first law of
thermodynamics asserts that there exists an extensive state function £ (called the
total energy of the system) such that for any process in a closed system

AE=qg+w closed syst. (2.37)

where AE is the energy change undergone by the system in the process, g is the heat
flow into the system during the process, and w is the work done on the system during
the process. The first law also asserts that a change in energy AE of the system is
accompanied by a change in energy of the surroundings equal to —AE, so the total
energy of system plus surroundings remains constant (is conserved). For any process,

AE,, + AE, =0 (2.38)

syst
We shall restrict ourselves to systems at rest in the absence of external fields. Here
K =0 =V, and from (2.35) we have E = U. Equation (2.37) becomes

AU=¢g +w closed syst. at rest, no fields (2.39)*

where AU is the change in internal energy of the system. U is an extensive state
function.

Note that, when we write AU, we mean AU . We always focus attention on the
system, and all thermodynamic state functions refer to the system unless otherwise
specified. The conventions for the signs of ¢ and w are set from the system’s viewpoint.
When heat flows into the system from the surroundings during a process, ¢ is positive
(g > 0); an outflow of heat from the system to the surroundings means ¢ is negative.
When work is done on the system by the surroundings (for example, in a compression
of the system), w is positive; when the system does work on its surroundings, w is neg-
ative. A positive ¢ and a positive w each increase the internal energy of the system.

For an infinitesimal process, Eq. (2.39) becomes

dU = dq + dw closed syst. (2.40)

where the other two conditions of (2.39) are implicitly understood. dU is the infini-
tesimal change in system energy in a process with infinitesimal heat dg flowing into
the system and infinitesimal work dw done on the system.

The internal energy U is (just like P or V or T) a function of the state of the
system. For any process, AU thus depends only on the final and initial states of the
system and is independent of the path used to bring the system from the initial state to
the final state. If the system goes from state 1 to state 2 by any process, then

AU = U, = Uy = Ugpar — Upiia (2.41)*

The symbol A always means the final value minus the initial value.
A process in which the final state of the system is the same as the initial state is
called a cyclic process; here U, = U,, and

AU=0 cyclic proc. (2.42)

which must obviously be true for the change in any state function in a cyclic process.
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In contrast to U, the quantities ¢ and w are not state functions. Given only the ini-
tial and final states of the system, we cannot find ¢ or w. The heat ¢ and the work w
depend on the path used to go from state 1 to state 2.

Suppose, for example, that we take 1.00 mole of liquid H,O at 25.0°C and
1.00 atm and raise its temperature to 30.0°C, the final pressure being 1.00 atm.
What is ¢? The answer is that we cannot calculate ¢ because the process is not speci-
fied. We could, if we like, increase the temperature by heating at 1 atm. In this case,
q = mcp AT = 18.0 g X 1.00 cal/(g °C) X 5.0°C = 90 cal. However, we could instead
emulate James Joule and increase 7 solely by doing work on the water, stirring it with
a paddle (made of an adiabatic substance) until the water reached 30.0°C. In this case,
g = 0. Or we could heat the water to some temperature between 25°C and 30°C and
then do enough stirring to bring it up to 30°C. In this case, g is between 0 and 90 cal.
Each of these processes also has a different value of w. However, no matter how we
bring the water from 25°C and 1.00 atm to 30.0°C and 1.00 atm, AU is always the
same, since the final and initial states are the same in each process.

EXAMPLE 2.3 cCalculation of AU

Calculate AU when 1.00 mol of H,0 goes from 25.0°C and 1.00 atm to 30.0°C
and 1.00 atm.

Since U is a state function, we can use any process we like to calculate AU.
A convenient choice is a reversible heating from 25°C to 30°C at a fixed pres-
sure of 1 atm. For this process, g = 90 cal, as calculated above. During the heat-
ing, the water expands slightly, doing work on the surrounding atmosphere. At
constant P, we have

W= W = —[2PdV=—P[2dV=—PV,~ V)

where (2.27) was used. Because P is constant, it can be taken outside the inte-
gral. The volume change is AV = V, — V, = m/p, — m/p,, where p, and p, are
the final and initial densities of the water and m = 18.0 g. A handbook gives
p, = 0.9956 g/cm?® and p, = 0.9970 g/cm>. We find AV = 0.025 ¢cm? and

1.987 cal mol™! K™

82.06 cm® atm mol ! K !
= —0.0006 cal (2.43)

where two values of R were used to convert w to calories. Thus, w is com-
pletely negligible compared with ¢, and AU = g + w = 90 cal. Because vol-
ume changes of liquids and solids are small, usually P-V work is significant
only for gases.

w = —0.025 cm’ atm = —0.025 cm’ atm

Exercise

Calculate g, w, and AU when 1.00 mol of water is heated from 0°C to 100°C
at a fixed pressure of 1 atm. Densities of water are 0.9998 g/cm? at 0°C and
0.9854 g/cm? at 100°C. (Answer: 1800 cal, —0.006 cal, 1800 cal.)

Although the values of ¢ and w for a change from state 1 to state 2 depend on the
process used, the value of ¢ + w, which equals AU, is the same for every process that
goes from state 1 to state 2. This is the experimental content of the first law.

Since ¢ and w are not state functions, it is meaningless to ask how much heat a
system contains (or how much work it contains). Although one often says that “heat
and work are forms of energy,” this language, unless properly understood, can mislead



one into the error of regarding heat and work as state functions. Heat and work are
defined only in terms of processes. Before and after the process of energy transfer
between system and surroundings, heat and work do not exist. Heat is an energy trans-
fer between system and surroundings due to a temperature difference. Work is an en-
ergy transfer between system and surroundings due to a macroscopic force acting
through a distance. Heat and work are forms of energy transfer rather than forms of
energy. Work is energy transfer due to the action of macroscopically observable
forces. Heat is energy transfer due to the action of forces at a molecular level. When
bodies at different temperatures are placed in contact, collisions between molecules of
the two bodies produce a net transfer of energy to the colder body from the hotter
body, whose molecules have a greater average kinetic energy than those in the colder
body. Heat is work done at the molecular level.

Much of the terminology of heat is misleading because it is a relic of the erro-
neous caloric theory of heat. Thus, one often refers to “heat flow” between system and
surroundings. In reality, the so-called heat flow is really an energy flow due to a tem-
perature difference. Likewise, the term “heat capacity” for C, is misleading, since it
implies that bodies store heat, whereas heat refers only to energy transferred in a
process; bodies contain internal energy but do not contain heat.

Heat and work are measures of energy transfer, and both have the same units as
energy. The unit of heat can therefore be defined in terms of the joule. Thus the defi-
nition of the calorie given in Sec. 2.3 is no longer used. The present definition is

lcal =4.184] exactly (2.44)*

where the value 4.184 was chosen to give good agreement with the old definition of
the calorie. The calorie defined by (2.44) is called the thermochemical calorie, often
designated caly,. (Over the years, several slightly different calories have been used.)

It is not necessary to express heat in calories. The joule can be used as the unit of
heat. This is what is done in the officially recommended SI units (Sec. 2.1), but since
some of the available thermochemical tables use calories, we shall use both joules and
calories as the units of heat, work, and internal energy.

Although we won’t be considering systems with mechanical energy, it is worthwhile to
consider a possible source of confusion that can arise when dealing with such systems.
Consider a rock falling in vacuum toward the earth’s surface. Its total energy is £ = K +
V' + U. Since the gravitational potential energy V is included as part of the system’s energy,
the gravitational field (in which the potential energy resides) must be considered part of the
system. In the first-law equation AE = ¢ + w, we do not include work that one part of the
system does on another part of the system. Hence w in the first law does not include the work
done by the gravitational field on the falling body. Thus for the falling rock, w is zero; also,
q is zero. Therefore AE = g + w is zero, and E remains constant as the body falls (although
both K and ¥ vary). In general, w in AE = ¢ + w does not include the work done by con-
servative forces (forces related to the potential energy V'in £ = K + V' + U).
Sometimes people get the idea that Einstein’s special relativity equation £ = mc
validates the conservation of energy, the first law of thermodynamics. This is not so. All
E = mc? says is that a mass m always has an energy mc? associated with it and an energy
E always has a mass m = E/c? associated with it. The total energy of system plus sur-
roundings is still conserved in special relativity; likewise, the total relativistic mass of
system plus surroundings is conserved in special relativity. Energy cannot disappear; mass
cannot disappear. The equation AE = g + w is still valid in special relativity. Consider, for
example, nuclear fission. Although it is true that the sum of the rest masses of the nuclear
fragments is less than the rest mass of the original nucleus, the fragments are moving at high
speed. The relativistic mass of a body increases with increasing speed, and the total rela-
tivistic mass of the fragments exactly equals the relativistic mass of the original nucleus.

2 in-
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[Some physicists argue against the use of the concept of relativistic mass and the use of the
formula E = mc? (where m is the relativistic mass). For opposing viewpoints, see G. Oas,
arxiv.org/abs/physics/0504110; T. R. Sandin, Am. J. Phys., 59, 1032 (1991).]

1250 ENTHALPY

The enthalpy H of a thermodynamic system whose internal energy, pressure, and vol-
ume are U, P, and V is defined as

H=U+ PV (2.45)*

Since U, P, and V are state functions, / is a state function. Note from dw,,, = —P dV
that the product of P and J has the dimensions of work and hence of energy. Therefore
it is legitimate to add U and PV, Naturally, A has units of energy.

Of course, we could take any dimensionally correct combination of state functions
to define a new state function. Thus, we might define (3U — 5PV)/T? as the state func-
tion “enwhoopee.” The motivation for giving a special name to the state function U +
PV is that this combination of U, P, and V occurs often in thermodynamics. For
example, let g, be the heat absorbed in a constant-pressure process in a closed system.
The first law AU = g + w [Eq. (2.39)] gives

U-U=qg+w=gqg— JVdeV= qP—PJVZdV=qP—P(V2 - )
v, v,
qp = Uy + PV, = Uy = PV, = (U, + P,),) = (U, + P\Vy) = H, — H,
AH = gp const. P, closed syst., P-V work only (2.46)*
since P, = P, = P. In the derivation of (2.46), we used (2.27) (w,, = —J? P dV) for

rev

the work w. Equation (2.27) gives the work associated with a volume change of the
system. Besides a volume change, there are other ways that system and surroundings
can exchange work, but we won’t consider these possibilities until Chapter 7. Thus
(2.46) is valid only when no kind of work other than volume-change work is done. Note
also that (2.27) is for a mechanically reversible process. A constant-pressure process is
mechanically reversible since, if there were unbalanced mechanical forces acting, the
system’s pressure P would not remain constant. Equation (2.46) says that for a closed
system that can do only P-V work, the heat ¢, absorbed in a constant-pressure process
equals the system’s enthalpy change.

For any change of state, the enthalpy change is

where A(PV) = (PV), — (PV), = P,V, — P,V,. For a constant-pressure process, P, =
P, = Pand A(PV) = PV, — PV, = P AV. Therefore

AH = AU + PAV const. P (2.48)
An error students sometimes make is to equate A(PV) with P AV + V' AP. We have
A(PV) = PV, — PV, = (P, + AP)(V, + AV) — PV,
= P, AV + VAP + APAV

Because of the AP AV term, A(PV) # P AV + V AP. For infinitesimal changes, we
have d(PV) = PdV + VdP, since d(uv) = udv + v du [Eq. (1.28)], but the corre-
sponding equation is not true for finite changes. [For an infinitesimal change, the equa-
tion after (2.48) becomes d(PV) = PdV + VdP + dP dV = P dV + V dP, since the
product of two infinitesimals can be neglected.]



Since U and V are extensive, H is extensive. The molar enthalpy of a pure sub-
stance is H, = H/n = (U + PV)/n = U, + PV,

Consider now a constant-volume process. If the closed system can do only P-V
work, then w must be zero, since no P-J work is done in a constant-volume process.
The first law AU = g + w then becomes for a constant-volume process

AU = gy closed syst., P-V work only, V' const. (2.49)

where ¢, is the heat absorbed at constant volume. Comparison of (2.49) and (2.46)
shows that in a constant-pressure process H plays a role analogous to that played by
U in a constant-volume process.

From Eq. (2.47), we have AH = AU + A(PV). Because solids and liquids have
comparatively small volumes and undergo only small changes in volume, in nearly all
processes that involve only solids or liquids (condensed phases) at low or moderate
pressures, the A(PV) term is negligible compared with the AU term. (For example,
recall the example in Sec. 2.4 of heating liquid water, where we found AU = ¢,.) For
condensed phases not at high pressures, the enthalpy change in a process is essentially
the same as the internal-energy change: AH =~ AU.

(26 HEAT CAPACITIES
The heat capacity C,, of a closed system for an infinitesimal process pr is defined as
Cy = dq,,/dT (2.50)*

where dg, and dT are the heat flowing into the system and the temperature change of
the system in the process. The subscript on C indicates that the heat capacity depends
on the nature of the process. For example, for a constant-pressure process we get Cp,
the heat capacity at constant pressure (or isobaric heat capacity):

_day

C, =
Pear

(2.51)*
Similarly, the heat capacity at constant volume (or isochoric heat capacity) Cj, of a
closed system is

_ dqy
dT

where dq,, and dT are the heat added to the system and the system’s temperature change
in an infinitesimal constant-volume process. Strictly speaking, Eqgs. (2.50) to (2.52)
apply only to reversible processes. In an irreversible heating, the system may develop
temperature gradients, and there will then be no single temperature assignable to the
system. If 7' is undefined, the infinitesimal change in temperature d7 is undefined.

Equations (2.46) and (2.49) written for an infinitesimal process give dg, = dH at
constant pressure and dg, = dU at constant volume. Therefore (2.51) and (2.52) can
be written as

c, (2.52)*

Cp = <8H> , Cy,= <8U> closed syst. in equilib., P-V work only (2.53)*
aT Jp aT )y
Cp and C), give the rates of change of A and U with temperature.

To measure C,, of a solid or liquid, one holds it at constant pressure in an adiabat-
ically enclosed container and heats it with an electrical heating coil. For a current /
flowing for a time ¢ through a wire with a voltage drop V across the wire, the heat gen-
erated by the coil is Vit. If the measured temperature increase A7 in the substance is
small, Eq. (2.51) gives Cp, = VIt/AT, where C,, is the value at the average temperature

53

Section 2.6
Heat Capacities



54

Chapter 2
The First Law of Thermodynamics

Cpm/(J/mol-K)

500 +
¢ sucrose (s)
p CgH;g()
200 —
Ba(NO;),(s)
» CHCl;(D)
100 +
» H,O()
50 + KCls)
CH4(§)
¢ Hy(g)
» Cu(s)
20 1
10 =
¢ C(diamond)
5 =<+
Figure 2.4

Molar heat capacities Cp, at 25°C
and 1 bar. The scale is
logarithmic.

of the experiment and at the pressure of the experiment. C,, of a gas is found from the
temperature increase produced by electrically heating the gas flowing at a known rate.

The thermodynamic state of an equilibrium system at rest in the absence of ap-
plied fields is specified by its composition (the number of moles of each component
present in each phase) and by any two of the three variables P, V, and 7. Commonly,
P and T are used. For a closed system of fixed composition, the state is specified by P
and 7. Any state function has a definite value once the system’s state is specified.
Therefore any state function of a closed equilibrium system of fixed composition is a
function of 7 and P. For example, for such a system, H = H(T, P). The partial deriv-
ative (0H(T, P)/oT)p is also a function of T"and P. Hence C, is a function of 7 and P
and is therefore a state function. Similarly, U can be taken as a function of 7 and V,
and C), is a state function.

For a pure substance, the molar heat capacities at constant P and at constant
are Cp,, = Cp/nand Cy,, = Cp/n. Some Cp,, values at 25°C and 1 atm are plotted in
Fig. 2.4. The Appendix gives further values. Clearly, Cp, increases with increasing
size of the molecules. See Sec. 2.11 for discussion of Cp, values.

For a one-phase system of mass m, the specific heat capacity c, is ¢, = Cp/m.
The adjective specific means “divided by mass.” Thus, the specific volume v and spe-
cific enthalpy / of a phase of mass m are v = V/m = 1/p and h = H/m.

Do not confuse the heat capacity Cp (which is an extensive property) with the
molar heat capacity Cp, or the specific heat capacity ¢, (which are intensive proper-
ties). We have

Cpm = Cp/n pure substance (2.54)*

cp= Cp/m one-phase system (2.55)*

Cp,n and cp are functions of 7" and P. Figure 2.5 plots some data for H,O(g). These
curves are discussed in Sec. 8.6.

One can prove from the laws of thermodynamics that for a closed system, C, and
C,, must both be positive. (See Miinster, sec. 40.)

Cp>0, Cp>0 (2.56)

Exceptions to (2.56) are systems where gravitational effects are important. Such sys-
tems (for example, black holes, stars, and star clusters) can have negative heat capac-
ities [D. Lynden-Bell, Physica 4, 263, 293 (1999)].

What is the relation between Cp, and C,? We have

oo (), - () - () - ()

oU av U
CG-C==)+prPl =) - (= (2.57)

We expect (0U/dT), and (dU/dT), in (2.57) to be related to each other. In
(0U/9T),, the internal energy is taken as a function of 7and V; U = U(T, V). The total
differential of U(T, V) is [Eq. (1.30)]

auU auU
dU = () dT + <) dv (2.58)

Equation (2.58) is valid for any infinitesimal process, but since we want to relate
(0U/0T),, to (aU/0T)p, we impose the restriction of constant P on (2.58) to give

U U
dU, = | — | dTr + | — | dV, 2.59
i <6T>V r (3V>T r (259



where the P subscripts indicate that the infinitesimal changes dU, dT, and dV occur at
constant P. Division by dT), gives

W _ (1) (1)

The ratio of infinitesimals dU,/dT) is the partial derivative (dU/dT)p, SO

aU aU aU\ [ aV
()~ (G),+ (G0 7) s
aT Jp aT )y aV )\ oT Jp
Substitution of (2.60) into (2.57) gives the desired relation:
104 14
Co—Cp=||—= ) tP|| = 2.61
t K8V>T KaT)p zob

The state function (0U/dV); in (2.61) has dimensions of pressure and is some-
times called the internal pressure. Clearly, (0U/dV); is related to that part of the
internal energy U that is due to intermolecular potential energy. A change in the sys-
tem’s volume V will change the average intermolecular distance and hence the aver-
age intermolecular potential energy. For gases not at high pressure, the smallness of
intermolecular forces makes (dU/dV); in (2.61) small. For liquids and solids, where
molecules are close to one another, the large intermolecular forces make (aU/aV);
large. Measurement of (dU/dV); in gases is discussed in Sec. 2.7.

2l THE JOULE AND JOULE-THOMSON EXPERIMENTS

In 1843 Joule tried to determine (dU/dV'), for a gas by measuring the temperature
change after free expansion of the gas into a vacuum. This experiment was repeated
by Keyes and Sears in 1924 with an improved setup (Fig. 2.6).

Initially, chamber A is filled with a gas, and chamber B is evacuated. The valve
between the chambers is then opened. After equilibrium is reached, the temperature
change in the system is measured by the thermometer. Because the system is sur-
rounded by adiabatic walls, ¢ is 0; no heat flows into or out of the system. The
expansion into a vacuum is highly irreversible. Finite unbalanced forces act within
the system, and as the gas rushes into B, there is turbulence and lack of pressure
equilibrium. Therefore dw = —P dV does not apply. However, we can readily cal-
culate the work —w done by the system. The only motion that occurs is within the
system itself. Therefore the gas does no work on its surroundings, and vice versa.
Hence w = 0 for expansion into a vacuum. Since AU = ¢ + w for a closed system,
we have AU = 0 + 0 = 0. This is a constant-energy process. The experiment mea-
sures the temperature change with change in volume at constant internal energy,
(0T/0V),. More precisely, the experiment measures AT/AV at constant U. The
method used to get (17/9V),, from AT/AV measurements is similar to that described
later in this section for (0770P).

We define the Joule coefficient ., (mu jay) as

= (8T/aV)y (2.62)
How is the measured quantity (07/0V),, = u, related to (9U/dV),? The variables in
these two partial derivatives are the same (namely, 7, U, and V). Hence we can use
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Figure 2.7

The Joule-Thomson experiment.

(0x/9y),(0y/9z)(9z/0x), = —1 [Eq. (1.34)] to relate these partial derivatives.
Replacement of x, y, and z with 7, U, and V gives

() () ().~
()~ -LG TG -G

oUu
— | = = 2.
<6V>T Cyuy (2.63)

where (9z/0x), = 1/(9x/9z),, (0U/OT), = Cy, and u, = (07/9V),, [Egs. (1.32), (2.53),
and (2.62)] were used.

Joule’s 1843 experiment gave zero for u, and hence zero for (dU/dV'),. However,
his setup was so poor that his result was meaningless. The 1924 Keyes—Sears experi-
ment showed that (U/dV), is small but definitely nonzero for gases. Because of
experimental difficulties, only a few rough measurements were made.

In 1853 Joule and William Thomson (in later life Lord Kelvin) did an experiment
similar to the Joule experiment but allowing far more accurate results to be obtained.
The Joule-Thomson experiment involves the slow throttling of a gas through a rigid,
porous plug. An idealized sketch of the experiment is shown in Fig. 2.7. The system
is enclosed in adiabatic walls. The left piston is held at a fixed pressure P,. The right
piston is held at a fixed pressure P, < P,. The partition B is porous but not greatly so.
This allows the gas to be slowly forced from one chamber to the other. Because the
throttling process is slow, pressure equilibrium is maintained in each chamber.
Essentially all the pressure drop from P, to P, occurs in the porous plug.

We want to calculate w, the work done on the gas in throttling it through the plug.
The overall process is irreversible since P, exceeds P, by a finite amount, and an
infinitesimal change in pressures cannot reverse the process. However, the pressure
drop occurs almost completely in the plug. The plug is rigid, and the gas does no work
on the plug, or vice versa. The exchange of work between system and surroundings
occurs solely at the two pistons. Since pressure equilibrium is maintained at each pis-
ton, we can use dw,,, = —P dV to calculate the work at each piston. The left piston
does work w, on the gas. We have dw, = —P, dV' = —P, dV, where we use subscripts
L and R for left and right. Let all the gas be throttled through. The initial and final vol-
umes of the left chamber are V; and 0, so

0 0
WL: _J PldV: _PIJ dV: —PI(O— V]) :PIVI
Vi g
The right piston does work dw, on the gas. (wj is negative, since the gas in the right
chamber does positive work on the piston.) We have wp = — [ 0V2 P,dV = —P,V,. The
work done on the gasisw = w;, + wp = P, V| — P,V,.

Porous Plug Adiabatic Wall
Py —> <P Py —> <P Py—>
. — [ Py /I .
— I | — —

(@) (b) ()
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The first law for this adiabatic process (¢ = 0) gives U, — U, = ¢ + w = w, so
U,—U, =PV, —PV,orU, + P,J, =U, + PV,. Since H= U + PV, we have

H, = H, or AH =0

The initial and final enthalpies are equal in a Joule-Thomson expansion.
Measurement of the temperature change AT = T, — T in the Joule-Thomson
experiment gives AT/AP at constant A. This may be compared with the Joule experi-
ment, which measures AT/AV at constant U.
We define the Joule-Thomson coefficient u ,, by

= <8T> (2.64)*
Myr = 9P ), .

W 1s the ratio of infinitesimal changes in two intensive properties and therefore is an
intensive property. Like any intensive property, it is a function of 7 and P (and the na-
ture of the gas).

A single Joule—-Thomson experiment yields only (A7/AP),,. To find (87/9P),; val-
ues, we proceed as follows. Starting with some initial P, and 7', we pick a value of
P, less than P, and do the throttling experiment, measuring 7,,. We then plot the two
points (7}, P,) and (7,, P,) on a 7-P diagram; these are points 1 and 2 in Fig. 2.8.
Since AH = 0 for a Joule-Thomson expansion, states 1 and 2 have equal enthalpies.
A repetition of the experiment with the same initial P, and 7, but with the pressure
on the right piston set at a new value P; gives point 3 on the diagram. Several repe-
titions, each with a different final pressure, yield several points that correspond to
states of equal enthalpy. We join these points with a smooth curve (called an isen-
thalpic curve). The slope of this curve at any point gives (d7/dP),, for the tempera-
ture and pressure at that point. Values of 7" and P for which u ; is negative (points to
the right of point 4) correspond to warming on Joule—-Thomson expansion. At point
4, u,r is zero. To the left of point 4, u,;, is positive, and the gas is cooled by throt-
tling. To generate further isenthalpic curves and get more values of u (7, P), we use
different initial temperatures 7.

Values of u ,, for gases range from +3 to —0.1°C/atm, depending on the gas and
on its temperature and pressure. Figure 2.9 plots some u - data for N, gas.

Joule—Thomson throttling is used to liquefy gases. For a gas to be cooled by a
Joule-Thomson expansion (AP < 0), its i, must be positive over the range of 7 and
P involved. In Joule-Thomson liquefaction of gases, the porous plug is replaced by a
narrow opening (a needle valve). Another method of gas liquefaction is an approxi-
mately reversible adiabatic expansion against a piston.

A procedure similar to that used to derive (2.63) yields (Prob. 2.35a)

oH
(6P>T = —Cpuyr (2.65)

We can use thermodynamic identities to relate the Joule and Joule-Thomson coeffi-
cients; see Prob. 2.35b.
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Figure 2.8

An isenthalpic curve obtained
from a series of Joule-Thomson
experiments.
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2.8 PERFECT GASES AND THE FIRST LAW

Perfect Gases

An ideal gas was defined in Chapter 1 as a gas that obeys the equation of state PV =
nRT. The molecular picture of an ideal gas is one with no intermolecular forces. If we
change the volume of an ideal gas while holding 7 constant, we change the average
distance between the molecules, but since intermolecular forces are zero, this distance
change will not affect the internal energy U. Also, the average translational kinetic
energy of the gas molecules is a function of 7 only (as is also true of the molecular
rotational and vibrational energies—see Sec. 2.11) and will not change with volume.
We therefore expect that, for an ideal gas, U will not change with / at constant 7" and
(0U/9V), will be zero. However, we are not yet in a position to prove this thermody-
namically. To maintain the logical development of thermodynamics, we therefore now
define a perfect gas as one that obeys both the following equations:

PV =nRT and (0U/dV); =0 perfect gas (2.66)*

An ideal gas is required to obey only PV = nRT. Once we have postulated the second
law of thermodynamics, we shall prove that (dU/dV), = 0 follows from PV = nRT,
so there is in fact no distinction between an ideal gas and a perfect gas. Until then, we
shall maintain the distinction between the two.

For a closed system in equilibrium, the internal energy (and any other state func-
tion) can be expressed as a function of temperature and volume: U = U(T, V).
However, (2.606) states that for a perfect gas U is independent of volume. Therefore U
of a perfect gas depends only on temperature:

U= UT) perf. gas (2.67)*

Since U is independent of V' for a perfect gas, the partial derivative (9U/dT), in
Eq. (2.53) for C), becomes an ordinary derivative: C;, = dU/dT and

dU = C,dT perf. gas (2.68)*
It follows from (2.67) and C,, = dU/dT that C), of a perfect gas depends only on 7:
Cy = Cy/T) perf. gas (2.69)*

For a perfect gas, H = U + PV = U + nRT Hence (2.67) shows that H depends
only on 7 for a perfect gas. Using Cp = (dH/dT)p [Eq. (2.53)], we then have

H = H(T), Cp = dH/dT, Cp = CH(T) perf. gas (2.70)*

Use of (aU/dV); = 0 [Eq. (2.66)] in C, — C,, = [(dU/aV); + PJ(0VIT)p
[Eq. (2.61)] gives

Cp — Cy = P(oV/dT)p perf. gas (2.71)
From PV = nRT, we get (0V/dT), = nR/P. Hence for a perfect gas C, — C}, = nR or
Cpm — Cym =R perf. gas (2.72)*

We have u,C,, = —(aU/dV), [Eq. (2.63)]. Since (dU/dV); = 0 for a perfect gas,
it follows that w, = 0 for a perfect gas. Also, u,;C, = —(dH/P); [Eq. (2.65)].
Since H depends only on 7 for a perfect gas, we have (0H/dP), = 0 for such a gas,
and w,, = 0 for a perfect gas. Surprisingly, as Fig. 2.9 shows, u  for a real gas does
not go to zero as P goes to zero. (See Prob. 8.37 for analysis of this fact.)

We now apply the first law to a perfect gas. For a reversible volume change,
dw = —PdV[Eq. (2.26)]. Also, (2.68) gives dU = C,, dT for a perfect gas. For a fixed
amount of a perfect gas, the first law dU = dg + dw (closed system) becomes

dU = CydT =dq — PdV perf. gas, rev. proc., P-V work only  (2.73)
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Perfect Gases and the First Law

Suppose 0.100 mol of a perfect gas having C},, = 1.50R independent of tem- Platm
perature undergoes the reversible cyclic process 1 — 2 — 3 — 4 — 1 shown in
Fig. 2.10, where either P or V is held constant in each step. Calculate ¢, w, and
AU for each step and for the complete cycle.

Since we know how P varies in each step and since the steps are reversible,
we can readily find w for each step by integrating dw,,, = —P dV. Since either
V or P is constant in each step, we can integrate dg, = C), dT and dqp = CpdT 100 4
[Egs. (2.51) and (2.52)] to find the heat in each step. The first law AU = g + w | |
then allows calculation of AU. 1000 2000 o3

To evaluate integrals like [7 C), dT, we will need to know the temperatures i
of states 1, 2, 3, and 4. We therefore begin by using PV = nRT to find these tem- Figure 2.10
peratures. For example, 7, = P,V,/nR = 122 K. Similarly, 7, = 366 K, T; =
732K, T, = 244 K.

Step 1 — 2 is at constant volume, no work is done, and w,_,, = 0. Step
2 — 3 is at constant pressure and

3.00-

A reversible cyclic process.

3
Wyy3 = —J Pdv = —P(V, — V) = —(3.00 atm)(2000 cm’® — 1000 cm’)
2

= —3000 cm® atm (8.314 J)/(82.06 cm® atm) = —304 ]

where two values of R were used to convert to joules. Similarly, w;_, = 0 and
wy_; = 101 J. The work w for the complete cycle is the sum of the works for
the four steps, sow = —304J + 0+ 101 J + 0 = —203 J.

Step 1 — 2 is at constant volume, and

2 2
Qi = f CydT = ncy,mf dT = n(1.50R)(T, — T))
1 1

= (0.100 mol)1.50[8.314 J/(mol K)](366 K — 122 K) = 304 ]

Step 2 — 3 is at constant pressure, and ¢, ,; = [3 Cp dT. Equation (2.72) gives
Coy = Cpy + R = 250R, and we find g, ,; = 761 J. Similarly, ¢;_,, =
—608% J and ¢4, = —2535 J. The total heat for the cycle is ¢ = 304 J +
7611 — 6085 J — 25317 = 203 J.

We have AU,_,, = ¢,_, + w,_,, = 304J + 0 = 304 J. Similarly, we find
AU, ;= 457], AU,_,, = —608; J, AU, ,; = —152; J. For the complete cycle,
AU =304 + 457 — 6083 J — 1521 J = 0, which can also be found from
q + was203J — 203 J = 0. An alternative procedure is to use the perfect-gas
equation dU = C,, dT to find AU for each step.

For this cyclic process, we found AU = 0, g # 0, and w # 0. These results
are consistent with the fact that U is a state function but ¢ and w are not.

Exercise

Use the perfect-gas equation dU = C,, dT to find AU for each step in the cycle
of Fig. 2.10. (Answer: 304 J, 456 J, —609 J, —152 J.)

Exercise

Verify that w for the reversible cyclic process in this example equals minus the
area enclosed by the lines in Fig. 2.10.
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System

Bath

Figure 2.11

Setup for an isothermal volume
change.

Reversible Isothermal Process in a Perfect Gas

Consider the special case of a reversible isothermal (constant-7) process in a perfect
gas. (Throughout this section, the system is assumed closed.) For a fixed amount of a
perfect gas, U depends only on T [Eq. (2.67)]. Therefore AU = 0 for an isothermal
change of state in a perfect gas. This also follows from dU = C), dT for a perfect gas.
The first law AU = ¢ + w becomes 0 = ¢ + w and ¢ = —w. Integration of dw,,, =
—P dV and use of PV = nRT give

2 2 2
nRT 1
W:_j PdV:_J VdV:—nRTJ T/dV:—nRT(ll‘le—anO
1 1 1

w= —q =nRTIn % = nRT ln% rev. isothermal proc., perf. gas (2.74)
2 1

where Boyle’s law was used. If the process is an expansion (V, > V), then w (the work
done on the gas) is negative and ¢ (the heat added to the gas) is positive. All the added
heat appears as work done by the gas, maintaining U as constant for the perfect gas.
It is best not to memorize an equation like (2.74), since it can be quickly derived from
dw= —PdV.

To carry out a reversible isothermal volume change in a gas, we imagine the gas to
be in a cylinder fitted with a frictionless piston. We place the cylinder in a very large
constant-temperature bath (Fig. 2.11) and change the external pressure on the piston at
an infinitesimal rate. [f we increase the pressure, the gas is slowly compressed. The work
done on it will transfer energy to the gas and will tend to increase its temperature at an
infinitesimal rate. This infinitesimal temperature increase will cause heat to flow out of
the gas to the surrounding bath, thereby maintaining the gas at an essentially constant
temperature. If we decrease the pressure, the gas slowly expands, thereby doing work
on its surroundings, and the resulting infinitesimal drop in gas temperature will cause
heat to flow into the gas from the bath, maintaining constant temperature in the gas.

EXAMPLE 2.5 Calculation of g, w, and AU

A cylinder fitted with a frictionless piston contains 3.00 mol of He gas at P =
1.00 atm and is in a large constant-temperature bath at 400 K. The pressure is re-
versibly increased to 5.00 atm. Find w, ¢, and AU for this process.

It is an excellent approximation to consider the helium as a perfect gas.
Since T is constant, AU is zero [Eq. (2.68)]. Equation (2.74) gives

w = (3.00 mol)(8.314 J mol ' K~ )(400 K) In (5.00/1.00) = (9980 J) In 5.00
w = (9980 7J)(1.609) = 1.61 X 10*J

Also, g = —w = —1.61 X 10*J. Of course, w (the work done on the gas) is pos-
itive for the compression. The heat g is negative because heat must flow from the
gas to the surrounding constant-temperature bath to maintain the gas at 400 K as
it is compressed.

Exercise

0.100 mol of a perfect gas with C),,, = 1.50R expands reversibly and isother-
mally at 300 K from 1.00 to 3.00 L. Find ¢, w, and AU for this process. (4dnswer:
2741, =274 17, 0.)

Reversible Constant-P (or Constant-}") Process in a Perfect Gas
The calculations of ¢, w, and AU for these processes were shown in Example 2.4.



Reversible Adiabatic Process in a Perfect Gas

For an adiabatic process, dg = 0. For a reversible process in a system with only P-V
work, dw = —P dV. For a perfect gas, dU = C,, dT [Eq. (2.68)]. Therefore, for a re-
versible adiabatic process in a perfect gas, the first law dU = dq + dw becomes

CydT = —PdV = —(nRT/V)dV
CymdT = —(RT/V)dV

where PV = nRT and C),, = C),/n were used. To integrate this equation, we separate
the variables, putting all functions of 7 on one side and all functions of /" on the other
side. We get (Cy,,/T)dT = —(R/V)dV. Integration gives

2 2
JCV’de=—jRdV=—R(1nV2—an1)=Ranl (2.75)
T N Vs

For a perfect gas, Cy,, is a function of T [Eq. (2.69)]. If the temperature change in the
process is small, Cy,,, will not change greatly and can be taken as approximately constant.
Another case where Cy,,, is nearly constant is for monatomic gases, where Cy,, is essen-
tially independent of 7 over a very wide temperature range (Sec. 2.11 and Fig. 2.15).
The approximation that Cy, is constant gives [7 (Cy,,/T)dT = Cy,, [3 T-'dT =

Cym In (T/T)), and Eq. (2.75) becomes Cy,,, In (7,/T}) = R In (Vl/Vz) or

In (To/Ty) = In (V) V)"
where k In x = In x* [Eq. (1.70)] was used. If In @ = In b, then a = b. Therefore

T, ( v, >R/Cy.m . .
— =\ perf. gas, rev. adiabatic proc., Cj const. (2.76)
T, 4

Since C) is always positive [Eq. (2.56)], Eq. (2.76) says that, when V, > V,, we
will have 7, < T,. A perfect gas is cooled by a reversible adiabatic expansion. In ex-
panding adiabatically, the gas does work on its surroundings, and since ¢ is zero, U
must decrease; therefore 7 decreases. A near-reversible, near-adiabatic expansion is
one method used in refrigeration.

An alternative equation is obtained by using P,V,/T, = P,V,/T,. Equation (2.76)
becomes

PaVo/ PV = (1 V2)¥n and - P80 = Py y TG
The exponent is 1 + R/Cy,, = (Cy,,, + B)/Cy,, = Cp/Cypy, since Cpy — Cp = R
for a perfect gas [Eq. (2.72)]. Defining the heat-capacity ratio -y (gamma) as
y = GCp/Cy
we have
PV =P, VY  perf. gas, rev. ad. proc., Cj const. (2.77)

For an adiabatic process, AU = ¢ + w = w. For a perfect gas, dU = C|, dT. With
the approximation of constant C;, we have

AU=C(T,—T))=w perf. gas, ad. proc., C}, const. (2.78)

To carry out a reversible adiabatic process in a gas, the surrounding constant-
temperature bath in Fig. 2.11 is replaced by adiabatic walls, and the external pressure
is slowly changed.

We might compare a reversible isothermal expansion of a perfect gas with a
reversible adiabatic expansion of the gas. Let the gas start from the same initial P, and
V, and go to the same V,. For the isothermal process, 7, = 7). For the adiabatic
expansion, we showed that 7, < T,. Hence the final pressure P, for the adiabatic
expansion must be less than P, for the isothermal expansion (Fig. 2.12).
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Summary

A perfect gas obeys PV = nRT, has (0U/0V), = 0 = (0H/dP),, has U, H, Cy, and Cp
depending on T only, has C, — C,, = nR, and has dU = C,, dT and dH = C, dT. These
equations are valid only for a perfect gas. A common error students make is to use one
of these equations where it does not apply.

2,911l CALCULATION OF FIRST-LAW QUANTITIES

This section reviews thermodynamic processes and then summarizes the available
methods for the calculation of ¢, w, AU, and AH in a process.

Thermodynamic Processes

When a thermodynamic system undergoes a change of state, we say it has undergone
a process. The path of a process consists of the series of thermodynamic states through
which the system passes on its way from the initial state to the final state. Two processes
that start at the same initial state and end at the same final state but go through different
paths (for example, a and b in Fig. 2.3) are different processes. (The term “change of
state” should not be confused with the term “phase change.” In thermodynamics, a sys-
tem undergoes a change of state whenever one or more of the thermodynamic proper-
ties defining the system’s state change their values.)

In a cyclic process, the system’s final state is the same as the initial state. In a cyclic
process, the change in each state function is zero: 0 = AT = AP = AV = AU = AH, etc.
However, ¢ and w need not be zero for a cyclic process (recall Example 2.4 in Sec. 2.8).

In a reversible process, the system is always infinitesimally close to equilibrium,
and an infinitesimal change in conditions can restore both system and surroundings to
their initial states. To perform a process reversibly, one must have only infinitesimal
differences in pressures and temperatures, so that work and heat will flow slowly. Any
changes in chemical composition must occur slowly and reversibly; moreover, there
must be no friction. We found that the work in a mechanically reversible process is
given by dw,,, = —P dV. In Chapter 3, we shall relate the heat dg,., in a reversible
process to state functions [see Eq. (3.20)].

In an isothermal process, 7 is constant throughout the process. To achieve this, one
encloses the system in thermally conducting walls and places it in a large constant-
temperature bath. For a perfect gas, U is a function of 7 only, so U is constant in an
isothermal process; this is not necessarily true for systems other than perfect gases.

In an adiabatic process, dg = 0 and ¢ = 0. This can be achieved by surrounding
the system with adiabatic walls.

In a constant-volume (isochoric) process, V' is held constant throughout the
process. Here, the system is enclosed in rigid walls. Provided the system is capable of
only P-V work, the work w is zero in an isochoric process.

In a constant-pressure (isobaric) process, P is held constant throughout the
process. Experiments with solids and liquids are often performed with the system
open to the atmosphere; here P is constant at the atmospheric pressure. To perform a
constant-P process in a gas, one encloses the gas in a cylinder with a movable piston,
holds the external pressure on the piston fixed at the initial pressure of the gas, and
slowly warms or cools the gas, thereby changing its volume and temperature at con-
stant P. For a constant-pressure process, we found that AH = gp.

Students are often confused in thermodynamics because they do not understand
whether a quantity refers to a property of a system in some particular thermodynamic
state or whether it refers to a process a system undergoes. For example, H is a prop-
erty of a system and has a definite value once the system’s state is defined; in contrast,
AH = H, — H, is the change in enthalpy for a process in which the system goes from



state 1 to state 2. Each state of a thermodynamic system has a definite value of H. Each
change of state has a definite value of AH.

There are two kinds of quantities for a process. The value of a quantity such as

AH, which is the change in a state function, is independent of the path of the process
and depends only on the final and the initial states: AH = H, — H,. The value of a
quantity such as g or w, which are not changes in state functions, depends on the path
of the process and cannot be found from the final and initial states alone.

We now review calculation of ¢, w, AU, and AH for various processes. In this re-

view, we assume that the system is closed and that only P-V work is done.

l.

Reversible phase change at constant 7 and P. A phase change or phase tran-
sition is a process in which at least one new phase appears in a system without the
occurrence of a chemical reaction. Examples include the melting of ice to liquid
water, the transformation from orthorhombic solid sulfur to monoclinic solid sulfur
(Sec. 7.4), and the freezing out of ice from an aqueous solution (Sec. 12.3). For now,
we shall be concerned only with phase transitions involving pure substances.

The heat ¢ is found from the measured latent heat (Sec. 7.2) of the phase
change. The work w is found from w = — [? P dV = —P AV, where AV is calcu-
lated from the densities of the two phases. If one phase is a gas, we can use PV =
nRT to find its volume (unless the gas is at high density). AH for this constant-
pressure process is found from AH = g, = ¢. Finally, AU is found from AU =
g + w. As an example, the measured (latent) heat of fusion (melting) of H,O at
0°C and 1 atm is 333 J/g. For the fusion of 1 mol (18.0 g) of ice at this 7 and P,
q = AH = 6.01 kJ. Thermodynamics cannot furnish us with the values of the
latent heats of phase changes or with heat capacities. These quantities must be
measured. (One can use statistical mechanics to calculate theoretically the heat
capacities of certain systems, as we shall later see.)

Constant-pressure heating with no phase change. A constant-pressure process
is mechanically reversible, so

2
W= Wy = —j PdV = —-PAV const. P
1

where AV is found from the densities at the initial and final temperatures or from
PV = nRT if the substance is a perfect gas. If the heating (or cooling) is reversible,
then 7 of the system is well defined and Cp, = dq,/dT applies. Integration of this
equation and use of AH = ¢, give

T,
AH = qp = j Cy(T)dT const. P (2.79)
T,

Since P is constant, we didn’t bother to indicate that C,, depends on P as well as
on 7. The dependence of C, and C), on pressure is rather weak. Unless one deals
with high pressures, a value of Cp measured at 1 atm can be used at other pres-
sures. AU is found from AU =g + w = g, + w.

If the constant-pressure heating is irreversible (for example, if during the
heating there is a finite temperature difference between system and surroundings
or if temperature gradients exist in the system), the relation AH = [? C, dT still
applies, so long as the initial and final states are equilibrium states. This is so be-
cause H is a state function and the value of AH is independent of the path
(process) used to connect states 1 and 2. If AH equals [? Cp dT for a reversible
path between states 1 and 2, then AH must equal [? Cp, dT for any irreversible path
between states 1 and 2. Also, in deriving AH = ¢, [Eq. (2.46)], we did not assume
the heating was reversible, only that P was constant. Thus, Eq. (2.79) holds for
any constant-pressure temperature change in a closed system with P-V work only.
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Since H is a state function, we can use the integral in (2.79) to find AH for
any process whose initial and final states have the same pressure, whether or not
the entire process occurs at constant pressure.

3. Constant-volume heating with no phase change. Since V is constant, w = 0.
Integration of C}, = dg,/dT and use of AU = g + w = ¢, give

2
AU = j C,dT = gy V const. (2.80)
1

As with (2.79), Eq. (2.80) holds whether or not the heating is reversible. AH is
found from AH = AU + A(PV) = AU + V AP.

4. Perfect-gas change of state. Since U and H of a perfect gas depend on 7 only, we
integrate dU = C),dT and dH = Cp dT [(2.68) and (2.70)] to give

T, T,
AU = J C/(T)dT, AH = J' Cp(T)dT  perf. gas (2.81)
T T,

1

If C(T) or Cp(T) is known, we can use Cp — C;, = nR and integrate to find AU
and AH. The equations of (2.81) apply to any perfect-gas change of state includ-
ing irreversible changes and changes in which P and V change. The values of
g and w depend on the path. If the process is reversible, then w = —[? PdV =
—nR [3 (T/V) dV, and we can find w if we know how T varies as a function of V.
Having found w, we use AU = ¢ + w to find gq.

5. Reversible isothermal process in a perfect gas. Since U and H of the perfect gas
are functions of 7 only, we have AU = 0 and AH = 0. Also, w = —[? PdV =
—nRT In (V,/V)) [Eq. (2.74)] and ¢ = —w, since ¢ + w = AU = 0.

6. Reversible adiabatic process in a perfect gas. The process is adiabatic, so ¢ =
0. We find AU and AH from Eq. (2.81). The first law gives w = AU. If C}, is es-
sentially constant, the final state of the gas can be found from P,V} = P,V'}
[Eq. (2.77)], where y = C,/C),.

7. Adiabatic expansion of a perfect gas into vacuum. Here (Sec. 2.7) ¢ = 0, w =
0,AU=¢g +w=0,and AH = AU + A(PV) = AU + nR AT = 0.

Equations (2.79) and (2.80) tell us how a temperature change at constant P or at
constant } affects H and U. At this point, we are not yet able to find the effects of a
change in P or ¥ on H and U. This will be dealt with in Chapter 4.

A word about units. Heat-capacity and latent-heat data are sometimes tabulated in
calories, so ¢ is sometimes calculated in calories. Pressures are often given in atmos-
pheres, so P-V work is often calculated in cm?® atm. The SI unit for ¢, w, AU, and AH
is the joule. Hence we frequently want to convert between joules, calories, and cm? atm.
We do this by using the values of R in (1.19) to (1.21). See Example 2.2 in Sec. 2.2.

A useful strategy to find a quantity such as AU or ¢ for a process is to write the
expression for the corresponding infinitesimal quantity and then integrate this expres-
sion from the initial state to the final state. For example, to find AU in an ideal-gas
change of state, we write dU = C;,dT and AU = [? C,(T) dT; to find g in a constant-
pressure process, we write dgp, = Cp dT and g, = [? Cp dT. The infinitesimal change
in a state function under the condition of constant P or 7 or V can often be found from
the appropriate partial derivative. For example, if we want dU in a constant-volume
process, we use (dU/9T),, = C, to write dU = C, dT for V constant, and AU =
J3 C,,dT, where the integration is at constant V.

When evaluating an integral from state 1 to 2, you can take quantities that are con-
stant outside the integral, but anything that varies during the process must remain inside
the integral. Thus, for a constant-pressure process, [2 PdV = P [3dV = P(V, — V),
and for an isothermal process, [2 (nRT/V)dV = nRT [3 (1/V)dV = nRT In (V,/V,).



However, in evaluating [? C(T) dT, we cannot take Cj outside the integral, unless we
know that it is constant in the temperature range from 7, to 7,.

EXAMPLE 2.6 cCalculation of AH

Cp,, of a certain substance in the temperature range 250 to 500 K at 1 bar pres-

sure is given by Cp,, = b + kT, where b and k are certain known constants. If n

moles of this substance is heated from 7 to 7, at 1 bar (where 7, and 7, are in
the range 250 to 500 K), find the expression for AH.

Since P is constant for the heating, we use (2.79) to get

2 T, T,

AH = qp = J nCp,, dT = nf (b + kT) dT = n(bT + 3kT?) .

1 7

1

AH = n[b(T, = T}) + ;K75 — T1)]

Exercise

Find the AH expression when n moles of a substance with Cp,, = r + sT"2,
where 7 and s are constants, is heated at constant pressure from 7, to 7.
[Answer: n (T, — T)) + 3ns(T3% — T372)]

(2101 STATE FUNCTIONS AND LINE INTEGRALS

We now discuss ways to test whether some quantity is a state function. Let the system
go from state 1 to state 2 by some process. We subdivide the process into infinitesimal
steps. Let db be some infinitesimal quantity associated with each infinitesimal step.
For example, db might be the infinitesimal amount of heat that flows into the system
in an infinitesimal step (db = dg), or it might be the infinitesimal change in system
pressure (db = dP), or it might be the infinitesimal heat flow divided by the system’s
temperature (db = dg/T), etc. To determine whether db is the differential of a state
function, we consider the line integral ; [ db, where the L indicates that the integral’s
value depends in general on the process (path) used to go from state 1 to state 2.

The line integral , [2 db equals the sum of the infinitesimal quantities db for the
infinitesimal steps into which we have divided the process. If b is a state function, then
the sum of the infinitesimal changes in b is equal to the overall change Ab = b, — b,
in b from the initial state to the final state. For example, if b is the temperature, then
J3dT = AT = T, — Ty; similarly, , [$ dU = U, — U,. We have

2
J db =1b, — b, if b is a state function (2.82)
1
L

Since b, — b, is independent of the path used to go from state 1 to state 2 and depends
only on the initial and final states 1 and 2, the value of the line integral ; 3 db is inde-
pendent of the path when b is a state function.

Suppose b is not a state function. For example, let db = dg, the infinitesimal heat
flowing into a system. The sum of the infinitesimal amounts of heat is equal to
the total heat ¢ flowing into the system in the process of going from state 1 to state 2;
we have ; [3dg = g; similarly, ; [2 dw = w, where w is the work in the process. We
have seen that ¢ and w are not state functions but depend on the path from state 1 to
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111

Figure 2.13

Three processes connecting states
1 and 2.

state 2. The values of the integrals ; [? dg and ; [ dw depend on the path from 1 to 2.
In general, if b is not a state function, then ; [? db depends on the path. Differentials
of a state function, for example, dU, are called exact differentials in mathematics; the
differentials dg and dw are inexact. Some texts use a special symbol to denote inexact
differentials and write 4g and 4w (or Dq and Dw) instead of dg and dw.

From (2.82), it follows that, if the value of the line integral ; [? db depends on the
path from state 1 to state 2, then b cannot be a state function.

Conversely, if ; [2 db has the same value for every possible path from state 1 to
state 2, b is a state function whose value for any state of the system can be defined as
follows. We pick a reference state 7 and assign it some value of b, which we denote by
b,. The b value of an arbitrary state 2 is then defined by

2
@—@=J% (2.83)

r

Since, by hypothesis, the integral in (2.83) is independent of the path, the value of b,
depends only on state 2; b, = b,(T,, P,), and b is thus a state function.

If 4 is any state function, A4 must be zero for any cyclic process. To indicate a cyclic
process, one adds a circle to the line-integral symbol. If 4 is a state function, then (2.82)
gives § db = 0 for any cyclic process. For example, $ dU = 0. But note that ¢ dg = ¢
and § dw = w, where the heat ¢ and work w are not necessarily zero for a cyclic process.

We now show that, if

fﬁ db =10

for every cyclic process, then the value of ; [% db is independent of the path and hence
b is a state function. Figure 2.13 shows three processes connecting states 1 and 2.
Processes I and II constitute a cycle. Hence the equation ¢ db = 0 gives

1 2
'ﬁm+f@=o (2.84)
2 1
1 11

Likewise, processes I and III constitute a cycle, and

1 2
.L%+j%=0 (2.85)
12 IIII

Subtraction of (2.85) from (2.84) gives

2 2
J%zj% (2.86)
l% IIII

Since processes II and III are arbitrary processes connecting states 1 and 2, Eq. (2.86)
shows that the line integral ; /2 db has the same value for every process between states
1 and 2. Therefore » must be a state function.

Summary
If b is a state function, then ; [ db equals b, — b, and is independent of the path from
state 1 to state 2. If b is a state function, then § db = 0.

If the value of , 3 db is independent of the path from 1 to 2, then b is a state func-
tion. If § db = 0 for every cyclic process, then b is a state function.



05 1 1 THE MOLECULAR NATURE OF INTERNAL ENERGY

Internal energy is energy at the molecular level. The molecular description of internal
energy is outside the scope of thermodynamics, but a qualitative understanding of
molecular energies is helpful.

Consider first a gas. The molecules are moving through space. A molecule has a
translational kinetic energy 3mv2, where m and v are the mass and speed of the mole-
cule. A translation is a motion in which every point of the body moves the same dis-
tance in the same direction. We shall later use statistical mechanics to show that the
total molecular translational kinetic energy U, ,, of one mole of a gas is directly pro-
portional to the absolute temperature and is given by [Eq. (14.14)] U, = 3RT, where
R is the gas constant.

If each gas molecule has more than one atom, then the molecules undergo rota-
tional and vibrational motions in addition to translation. A rotation is a motion in
which the spatial orientation of the body changes, but the distances between all points
in the body remain fixed and the center of mass of the body does not move (so that
there is no translational motion). In Chapter 21, we shall use statistical mechanics to
show that except at very low temperatures the energy of molecular rotation U, ,
in one mole of gas is RT for linear molecules and 3RT for nonlinear molecules
[Eq (211 12)] Urot,lin,m = RT’ Urot,nonlin,m = %RT

Besides translational and rotational energies, the atoms in a molecule have vibra-
tional energy. In a molecular vibration, the atoms oscillate about their equilibrium po-
sitions in the molecule. A molecule has various characteristic ways of vibrating, each
way being called a vibrational normal mode (see, for example, Figs. 20.26 and 20.27).
Quantum mechanics shows that the lowest possible vibrational energy is not zero but
is equal to a certain quantity called the molecular zero-point vibrational energy
(so-called because it is present even at absolute zero temperature). The vibrational
energy contribution U, to the internal energy of a gas is a complicated function of
temperature [Eq. (21.113)]. For most light diatomic (two-atom) molecules (for ex-
ample, H,, N,, HF, CO) at low and moderate temperatures (up to several hundred
kelvins), the average molecular vibrational energy remains nearly fixed at the zero-
point energy as the temperature increases. For polyatomic molecules (especially
those with five or more atoms) and for heavy diatomic molecules (for example, I,)
at room temperature, the molecules usually have significant amounts of vibrational
energy above the zero-point energy.

Figure 2.14 shows translational, rotational, and vibrational motions in CO,.

In classical mechanics, energy has a continuous range of possible values. Quantum
mechanics (Chapter 17) shows that the possible energies of a molecule are restricted to
certain values called the energy levels. For example, the possible rotational-energy val-
ues of a diatomic molecule are J(J + 1)b [Eq. (17.81)], where b is a constant for a given
molecule and J can have the values 0, 1, 2, etc. One finds (Sec. 21.5) that there is a dis-
tribution of molecules over the possible energy levels. For example, for CO gas at 298 K,
0.93% of the molecules are in the J = 0 level, 2.7% are in the J = 1 level, 4.4% are in
the J = 2 level, . .., 3.1% are in the J = 15 level, . . . . As the temperature increases,
more molecules are found in higher energy levels, the average molecular energy
increases, and the thermodynamic internal energy and enthalpy increase (Fig. 5.11).

Besides translational, rotational, and vibrational energies, a molecule possesses
electronic energy &, (epsilon el). We define this energy as g, = &, — &,, Where
&g, 18 the energy of the molecule with the nuclei at rest (no translation, rotation, or
vibration) at positions corresponding to the equilibrium molecular geometry, and €_,
is the energy when all the nuclei and electrons are at rest at positions infinitely far
apart from one another, so as to make the electrical interactions between all the
charged particles vanish. (The quantity € is given by the special theory of relativity
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as the sum of the rest-mass energies m,.c? for the electrons and nuclei.) For a sta-
ble molecule, &, is less than &,

The electronic energy ¢, can be changed by exciting a molecule to a higher elec-
tronic energy level. Nearly all common molecules have a very large gap between the
lowest electronic energy level and higher electronic levels, so at temperatures below,
say, 5000 K, virtually all the molecules are in the lowest electronic level and the con-
tribution of electronic energy to the internal energy remains constant as the tempera-
ture increases (provided no chemical reactions occur).

In a chemical reaction, the electronic energies of the product molecules differ
from those of the reactant molecules, and a chemical reaction changes the thermody-
namic internal energy U primarily by changing the electronic energy. Although the
other kinds of molecular energy generally also change in a reaction, the electronic
energy undergoes the greatest change.

Besides translational, rotational, vibrational, and electronic energies, the gas
molecules possess energy due to attractions and repulsions between them (intermo-
lecular forces); intermolecular attractions cause gases to liquefy. The nature of inter-
molecular forces will be discussed in Sec. 21.10. Here, we shall just quote some key
results for forces between neutral molecules.

The force between two molecules depends on the orientation of one molecule rel-
ative to the other. For simplicity, one often ignores this orientation effect and uses a
force averaged over different orientations so that it is a function solely of the distance
r between the centers of the interacting molecules. Figure 21.21a shows the typical be-
havior of the potential energy v of interaction between two molecules as a function of
r; the quantity o (sigma) is the average diameter of the two molecules. Note that, when
the intermolecular distance r is greater than 23 or 3 times the molecular diameter o,
the intermolecular potential energy v is negligible. Intermolecular forces are gener-
ally short-range. When r decreases below 30, the potential energy decreases at first,
indicating an attraction between the molecules, and then rapidly increases when r
becomes close to o, indicating a strong repulsion. Molecules initially attract each
other as they approach and then repel each other when they collide. The magnitude
of intermolecular attractions increases as the size of the molecules increases, and it
increases as the molecular dipole moments increase.

The average distance between centers of molecules in a gas at 1 atm and 25°C is
about 35 A (Prob. 2.55), where the angstrom (A) is

1A=10%cm=10"m=0.1 nm 2.87)*

Typical diameters of reasonably small molecules are 3 to 6 A [see (15.26)]. The aver-
age distance between gas molecules at 1 atm and 25°C is 6 to 12 times the molecular
diameter. Since intermolecular forces are negligible for separations beyond 3 times the
molecular diameter, the intermolecular forces in a gas at 1 atm and 25°C are quite
small and make very little contribution to the internal energy U. Of course, the spatial
distribution of gas molecules is not actually uniform, and even at 1 atm significant
numbers of molecules are quite close together, so intermolecular forces contribute
slightly to U. At 40 atm and 25°C, the average distance between gas molecules is only
10 A, and intermolecular forces contribute substantially to U.

Let Ujyermolm b€ the contribution of intermolecular interactions to Uy, Ujyermolm
differs for different gases, depending on the strength of the intermolecular forces.
Problem 4.22 shows that, for a gas, U, emoelm 18 typically —1 to —10 cal/mol at 1 atm
and 25°C, and —40 to —400 cal/mol at 40 atm and 25°C. (U,,.;mo 1S NEgative because
intermolecular attractions lower the internal energy.) These numbers may be com-
pared with the 25°C value U, = 3RT = 900 cal/mol.

The fact that it is very hard to compress liquids and solids tells us that in con-
densed phases the molecules are quite close to one another, with the average distance
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between molecular centers being only slightly greater than the molecular diameter.
Here, intermolecular forces contribute very substantially to U. In a liquid, the molec-
ular translational, rotational, and vibrational energies are, to a good approximation
(Sec. 21.11), the same as in a gas at the same temperature. We can therefore find
Uspiermor 11! @ liquid by measuring AU when the liquid vaporizes to a low-pressure gas.
For common liquids, AU, for vaporization typically lies in the range 3 to 15 kcal/mol,
indicating Uy emmorm Values of —3000 to —15000 cal/mol, far greater in magnitude
than U, ermorm 10 gases and U, in room-temperature liquids and gases.

Discussion of U in solids is complicated by the fact that there are several kinds of
solids (see Sec. 23.3). Here, we consider only molecular solids, those in which the
structural units are individual molecules, these molecules being held together by in-
termolecular forces. In solids, the molecules generally don’t undergo translation or
rotation, and the translational and rotational energies found in gases and liquids are
absent. Vibrations within the individual molecules contribute to the internal energy. In
addition, there is the contribution U, of intermolecular interactions to the internal
energy. Intermolecular interactions produce a potential-energy well (similar to that in
Fig. 21.21a) within which each entire molecule as a unit undergoes a vibrationlike
motion that involves both kinetic and potential energies. Estimates of Ul m from
heats of sublimation of solids to vapors indicate that for molecular crystals, U,emolm
is in the same range as for liquids.

For a gas or liquid, the molar internal energy is
Um = Utr,m + Urot,m + Uvib,m + Uel,m + l]intermol,m + l]rest,m

where U, ,, 1s the molar rest-mass energy of the electrons and nuclei, and is a con-

stant. Provided no chemical reactions occur and the temperature is not extremely high,

Uqm 18 @ constant. Uyyermorm 18 @ function of 7'and P. Uy, U,y 1, and Uy, ,,, are func-
tions of 7.
For a perfect gas, U, ermorm = 0. The use of Uy, = 3RT, Urotnontinm = 3RT, and
Urot,lin,m = RTgiVCS
U, = 3RT + 3RT (or RT) + Uy, m(T) + const. perf. gas (2.88)
For monatomic gases (for example, He, Ne, Ar), U\, = 0 = Uy, 1, 80
U, = 3RT + const. perf. monatomic gas (2.89)
The use of Cy,,, = (0U,,/dT)y and Cp,, — Cp,, = R gives
Cym = %R, Com = 3R perf. monatomic gas (2.90)

provided T is not extremely high.

For polyatomic gases, the translational contribution to Cy, is Cpp,, = 3R; the
rotational contribution is Cy o inm = B> Cyrrotnontinm = 3R (provided T'is not extremely
low); Cy i, 18 @ complicated function of 7—for light diatomic molecules, Cy;, ,, 18
negligible at room temperature.

Figure 2.15 plots Cp,, at 1 atm versus T for several substances. Note that Cp , =3R =
5 cal/(mol K) for He gas between 50 and 1000 K. For H,O gas, Cp,, starts at 4R =
8 cal/(mol K) at 373 K and increases as T increases. Cp,, = 4R means CVm 3R. The
value 3R for this nonlinear molecule comes from Cy\, + Cprom = 3R + 3R. The
increase above 3R as T increases is due to the contribution from Cy ., , as excited
vibrational levels become populated.

The high value of Cp, of liquid water compared with that for water vapor results
from the contribution of intermolecular interactions to U. Usually C, for a liquid is
substantially greater than that for the corresponding vapor.

The theory of heat capacities of solids will be discussed in Sec. 23.12. For all
solids, Cp, goes to zero as T goes to zero.
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Figure 2.15

Cp,, at 1 atm versus T for several
substances; s, /, and g stand for
solid, liquid, and gas.
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The heat capacities Cp,, = (0H,,/0T)p and Cy,, = (9U,,/dT), are measures of how
much energy must be added to a substance to produce a given temperature increase.
The more ways (translation, rotation, vibration, intermolecular interactions) a sub-
stance has of absorbing added energy, the greater will be its Cp, and C),, values.

(21120 PROBLEM SOLVING

Trying to learn physical chemistry solely by reading a textbook without working prob-
lems is about as effective as trying to improve your physique by reading a book on
body conditioning without doing the recommended physical exercises.

If you don’t see how to work a problem, it often helps to carry out these steps:

—_—

List all the relevant information that is given.

2. List the quantities to be calculated.

3. Ask yourself what equations, laws, or theorems connect what is known to what is
unknown.

4. Apply the relevant equations to calculate what is unknown from what is given.

Although these steps are just common sense, they can be quite useful. The point
is that problem solving is an active process. Listing the given information and the un-
known quantities and actively searching for relationships that connect them gets your
mind working on the problem, whereas simply reading the problem over and over may
not get you anywhere. In listing the given information, it is helpful to translate the
words in the problem into equations. For example, the phrase “adiabatic process”
is translated into dg = 0 and ¢ = 0; “isothermal process” is translated into d7 = 0 and
T = constant.

In steps 1 and 2, sketches of the system and the process may be helpful. In work-
ing a problem in thermodynamics, one must have clearly in mind which portion of the
universe is the system and which is the surroundings. The nature of the system should
be noted—whether it is a perfect gas (for which many special relations hold), a
nonideal gas, a liquid, a solid, a heterogeneous system, etc. Likewise, be aware of
the kind of process involved—whether it is adiabatic, isothermal (7 constant), isobaric
(P constant), isochoric (7 constant), reversible, etc.



Of course, the main hurdle is step 3. Because of the many equations in physical
chemistry, it might seem a complex task to find the right equation to use in a problem.
However, there are relatively few equations that are best committed to memory. These
are usually the most fundamental equations, and usually they have fairly simple forms.
For example, we have several equations for mechanically reversible P-J work in a
closed system: dw,,, = —P dV gives the work in an infinitesimal reversible process;
W,y = —J3 P dV gives the work in a finite reversible process; the work in a constant-
pressure process is —P AV; the work in an isothermal reversible process in a perfect gas
is w = nRT In (V}/V,). The only one of these equations worth memorizing is dw,,, =
—P dV, since the others can be quickly derived from it. Moreover, rederiving an
equation from a fundamental equation reminds you of the conditions under which
the equation is valid. Do not memorize unstarred equations. Readers who have invested
their time mainly in achieving an understanding of the ideas and equations of physical
chemistry will do better than those who have spent their time memorizing formulas.

Many of the errors students make in thermodynamics arise from using an equa-
tion where it does not apply. To help prevent this, many of the equations have the con-
ditions of validity stated next to them. Be sure the equations you are using are
applicable to the system and process involved. For example, students asked to calcu-
late ¢ in a reversible isothermal expansion of a perfect gas sometimes write “dg =
Cp dT and since dT = 0, we have dg = 0 and ¢ = 0.” This conclusion is erroneous.
Why? (See Prob. 2.63.)

If you are baffled by a problem, the following suggestions may help you. (a) Ask
yourself what given information you have not yet used, and see how this information
might help solve the problem. (b) Instead of working forward from the known quanti-
ties to the unknown, try working backward from the unknown to the known. To do this,
ask yourself what quantities you must know to find the unknown; then ask yourself
what you must know to find these quantities; etc. (¢) Write down the definition of the
desired quantity. For example, if a density is wanted, write p = m/} and ask yourself
how to find m and V. If an enthalpy change is wanted, write H = U + PV and
AH = AU + A(PV) and see if you can find AU and A(PV). (d) In analyzing a ther-
modynamic process, ask yourself which state functions stay constant and which
change. Then ask what conclusions can be drawn from the fact that certain state func-
tions stay constant. For example, if V'is constant in a process, then the P-J work must
be zero. (e) Stop working on the problem and go on to something else. The solution
method might occur to you when you are not consciously thinking about the problem.
A lot of mental activity occurs outside of our conscious awareness.

When dealing with abstract quantities, it often helps to take specific numerical
values. For example, suppose we want the relation between the rates of change
dn,/dt and dng/dt for the chemical reaction A + 2B — products, where n, and ng
are the moles of A and B and 7 is time. Typically, students will say either that dn,/dt
= 2 dng/dt or that dn,/dt = 3dngy/dt. (Before reading further, which do you think is
right?) To help decide, suppose that in a tiny time interval d¢ = 1073 s, 0.001 mol
of A reacts, so that dn, = —0.001 mol. For the reaction A + 2B — products, find
the corresponding value of dny; and then find dn,/dt and dng/dt and compare them.

In writing equations, a useful check is provided by the fact that each term in an
equation must have the same dimensions. Thus, an equation that contains the expression
U + TV cannot be correct, because U has dimensions of energy = mass X length?/time?,
whereas TV has dimensions of temperature X volume = temperature X length®. From
the definitions (1.25) and (1.29) of a derivative and a partial derivative, it follows that
(9z/0x), has the same dimensions as z/x. The definitions (1.52) and (1.59) of indefinite
and definite integrals show that [ fdx and [? fdx have the same dimensions as fx.

When writing equations, do not mix finite and infinitesimal changes in the same
equation. Thus, an equation that contains the expression P dV + V" AP must be wrong
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because dV is an infinitesimal change and AP is a finite change. If one term in an equa-
tion contains a single change in a state function, then another term that contains only
state functions must contain a change. Thus, an equation cannot contain the expres-
sion PV + V AP or the expression PV + V dP.

As to step 4, performing the calculations, errors can be minimized by carrying
units of all quantities as part of the calculation. Make sure you are using a self-
consistent set of units. Do not mix joules and kilojoules or joules and calories or joules
and cm? atm in the same equation. If you are confused about what units to use, a strat-
egy that avoids errors is to express all quantities in SI units. /nconsistent use of units
is one of the most common student errors in physical chemistry.

Express your answer with the proper units. 4 numerical answer with no units is
meaningless.

In September 1999, the $125 million U.S. Mars Climate Orbiter spacecraft was lost. It
turned out that the engineers at Lockheed Martin sent data on the thrust of the spacecraft’s
thrusters to scientists at the Jet Propulsion Laboratory in units of pounds-force, but the JPL
scientists assumed the thrust was in units of newtons, and so their programming of rocket
firings to correct the trajectory produced an erroneous path that did not achieve orbit (New
York Times, Oct. 1, 1999, p. A1). You don’t have to be a rocket scientist to mess up on units.

On July 23, 1983, Air Canada Flight 143 ran out of fuel at 28,000 feet altitude and only
halfway to its destination. When the plane had been refueled in Ottawa, the plane’s on-board
fuel gauge was not working. Captain Robert Pearson knew that the plane needed 22,000 kg
of fuel for the trip. The fuel-truck gauge read in liters, so Pearson asked the mechanic for the
density of the fuel. He was told “1.77.” Pearson assumed this was 1.77 kg/L, and used this
figure to calculate the volume of the fuel needed. The plane was a new Boeing 767, and in
line with Canada’s conversion to metric units, its fuel load was measured in kilograms, in
contrast to older planes, which used pounds. The mechanic was used to dealing with fuel
loads in pounds (Ib), so the figure of 1.77 he gave was actually 1.77 Ib/L, which is 0.80 kg/L.
Because of this miscommunication due to omission of units, Pearson requested a bit less than
half the fuel volume he needed and took off with 22,000 pounds of fuel instead of 22,000 kg.

Although the plane was out of fuel, an emergency electric generator (the ram air tur-
bine) that uses the air stream resulting from the plane’s speed to supply power to the
plane’s hydraulic system gave Pearson some control of the plane. Also, emergency battery
power kept a few of the plane’s instrument-panel gauges working. Pearson was an experi-
enced glider pilot and flew the plane for 17 minutes after it ran out of fuel. He headed for
an abandoned Canadian Air Force base at Gimli. Approaching Gimli, he realized the plane
was coming in too high and too fast for a safe landing, so he executed a maneuver used
with gliders to lose speed and altitude; this maneuver had never been tried with a com-
mercial jet, but it worked. When the plane reached the runway, the crew saw people on the
runway—the abandoned runway was being used for car races. The crew used a backup
system to drop the landing gear; the nose wheel got stuck partway down and collapsed on
landing; the scraping of the nose along the ground, together with Pearson’s application of
the brakes, brought the plane to a stop before it reached the people on the runway. There
were no fatalities and only a few minor injuries when the passengers evacuated the plane.

Express the answer to the proper number of significant figures. Use a calcula-
tor with keys for exponentials and logarithms for calculations. After the calculation
is completed, it is a good idea to check the entire solution. If you are like most of
us, you are probably too lazy to do a complete check, but it takes only a few sec-
onds to check that the sign and the magnitude of the answer are physically reason-
able. Sign errors are especially common in thermodynamics, since most quantities
can be either positive or negative.

A solutions manual for problems in this textbook is available.



(2130 SUMMARY

The work done on a closed system when it undergoes a mechanically reversible infin-
itesimal volume change is dw,,, = —P dV.

The line integral [3 P(T, V) dV (which equals —w,,,) is defined to be the sum of
the infinitesimal quantities P(7, V) dV for the process from state 1 to state 2. In gen-
eral, the value of a line integral depends on the path from state 1 to state 2.

The heat transferred to a body of constant composition when it undergoes a tem-
perature change d7 at constant pressure is dgp = C, dT, where C, is the body’s heat
capacity at constant pressure.

The first law of thermodynamics expresses the conservation of the total energy of
system plus surroundings. For a closed system at rest in the absence of fields, the total
energy equals the internal energy U, and the change in U in a process is AU = g + w,
where ¢ and w are the heat flowing into and the work done on the system in the
process. U is a state function, but ¢ and w are not state functions. The internal energy
U is energy that exists at the molecular level and includes molecular kinetic and
potential energies.

The state function enthalpy H is defined by H = U + PV. For a constant-pressure
process, AH = ¢, in a closed system with P-7 work only.

The heat capacities at constant pressure and constant volume are Cp, = dqp/dT =
(0H/9T)p and C), = dq,/dT = (aU/9T),.

The Joule and Joule-Thomson experiments measure (d7/9V), and (97/0P);
these derivatives are closely related to (dU/dV),; and (0H/9P);.

A perfect gas obeys PV = nRT and (dU/dV), = 0. The changes in thermodynamic
properties for a perfect gas are readily calculated for reversible isothermal and re-
versible adiabatic processes.

The methods used to calculate ¢, w, AU, and AH for various kinds of thermody-
namic processes were summarized in Sec. 2.9.

The line integral , [ db is independent of the path from state 1 to state 2 if and
only if b is a state function. The line integral ¢ db is zero for every cyclic process if
and only if b is a state function.

The molecular interpretation of internal energy in terms of intramolecular and
intermolecular energies was discussed in Sec. 2.11.

Important kinds of calculations dealt with in this chapter include calculations of
q, w, AU, and AH for

*  Phase changes (for example, melting).

e Heating a substance at constant pressure.

e Heating at constant volume.

*  An isothermal reversible process in a perfect gas.

* An adiabatic reversible process in a perfect gas with C), constant.
*  An adiabatic expansion of a perfect gas into vacuum.

* A constant-pressure reversible process in a perfect gas.

* A constant-volume reversible process in a perfect gas.

FURTHER READING

Zemansky and Dittman, chaps. 3, 4, 5; Andrews (1971), chaps. 5, 6, 7; de Heer,
chaps. 3, 9; Kestin, chap. 5; Reynolds and Perkins, chaps. 1, 2; Van Wylen and
Sonntag, chaps. 4, 5.
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Section 2.1

2.1 True or false? (a) The kinetic energy of a system of several
particles equals the sum of the kinetic energies of the individ-
ual particles. (b) The potential energy of a system of interacting
particles equals the sum of the potential energies of the indi-
vidual particles.

2.2 Give the SI units of (a) energy; (b) work; (c¢) volume;
(d) force; (e) speed; (f) mass.

2.3 Express each of these units as a combination of meters,
kilograms, and seconds: (a) joule; (b) pascal; (c) liter; (d) new-
ton; (e) watt.

2.4 An apple of mass 155 g falls from a tree and is caught by a
small boy. If the apple fell a distance of 10.0 m, find (a) the work
done on the apple by the earth’s gravitational field; (b) the kinetic
energy of the apple just before it was caught; (c) the apple’s
speed just before it was caught.

2.5 An apple of mass 102 g is ground up into applesauce
(with no added sugar) and spread evenly over an area of 1.00 m?
on the earth’s surface. What is the pressure exerted by the
applesauce?

2.6 In the obsolete cgs system of mechanical units, length is
expressed in centimeters, mass in grams, and time in seconds.
The cgs unit of force is the dyne and the cgs unit of energy is
the erg. Find the relation between dynes and newtons. Find the
relation between ergs and joules.

Section 2.2

2.7 True or false? (a) The P-V work in a mechanically revers-
ible process in a closed system always equals —P AV (b) The
symbol w in this book means work done on the system by the
surroundings. (¢) The infinitesimal P-V work in a mechanically
reversible process in a closed system always equals —P dV.
(d) The value of the work w in a reversible process in a closed
system can be found if we know the initial state and the final
state of the system. (e) The value of the integral [ P dV is fixed
once the initial and final states 1 and 2 and the equation of state
P = P(T, V) are known. (f) The equation w,,, = —[? PdV
applies only to constant-pressure processes. (g) [? PdV =
J? nR dT for every reversible process in an ideal gas.

28 IfP,=175torr, VV, =2.00L, P, =122 torr, ¥, = 5.00 L,
find w,,, for process (b) of Fig. 2.3 by (a) finding the area under
the curve; (b) using w,,, = —[7 P dV.

2.9 A nonideal gas is heated slowly and expands reversibly
at a constant pressure of 275 torr from a volume of 385 cm? to
875 cm?. Find w in joules.

2.10 Using the P,, V;, P,, and V, values of Example 2.2, find
w for a reversible process that goes from state 1 to state 2 in
Fig. 2.3 via a straight line (@) by calculating the area under
the curve; (b) by using w,,, = —[? P dV. [Hint: The equation of

the straight line that goes through points x,, y, and x,, y, is

0= y)/x = x) =, = y)lx, = x)).]

2.11 It was stated in Sec. 2.2 that for a given change of state,
W,., can have any positive or negative value. Consider a change
of state for which P, = P, and V, > V/|. For this change of state,
use a P-V diagram to (a) sketch a process with w,,, < 0;
(b) sketch a process with w,,, > 0. Remember that neither P
nor V can be negative.

Section 2.3

2.12  Specific heats can be measured in a drop calorimeter;
here, a heated sample is dropped into the calorimeter and the
final temperature is measured. When 45.0 g of a certain metal
at 70.0°C is added to 24.0 g of water (with ¢, = 1.00 cal/g-°C)
at 10.0°C in an insulated container, the final temperature is
20.0°C. (@) Find the specific heat capacity of the metal. (b) How
much heat flowed from the metal to the water? Note: In (a), we
are finding the average c, over the temperature range of the
experiment. To determine ¢, as a function of 7, one repeats the
experiment many times, using different initial temperatures for
the metal.

Section 2.4

2.13  True or false? (a) For every process, AE = —AE,.
(b) For every cyclic process, the final state of the system is the
same as the initial state. (¢) For every cyclic process, the final
state of the surroundings is the same as the initial state of the sur-
roundings. (d) For a closed system at rest with no fields present,
the sum ¢ + w has the same value for every process that goes
from a given state 1 to a given state 2. (e) If systems A and B
each consist of pure liquid water at 1 bar pressure and if
T, > T, then the internal energy of system A must be greater
than that of B.

2.14 For which of these systems is the system’s energy con-
served in every process: (a) a closed system; (b) an open sys-
tem; (c) an isolated system; (d) a system enclosed in adiabatic
walls?

2.15 One food calorie = 10° cal = 1 keal. A typical adult in-
gests 2200 kcal/day. (a) Show that an adult uses energy at about
the same rate as a 100-W lightbulb. (») Calculate the total an-
nual metabolic-energy expenditure of the 7 X 10° people on
earth and compare it with the 5 X 102 J per year energy used
by the world economy. (Neglect the fact that children use less
metabolic energy than adults.)

2.16 A mole of water vapor initially at 200°C and 1 bar un-
dergoes a cyclic process for which w = 338 J. Find ¢ for this
process.

2.17 William Thomson tells of running into Joule in 1847 at
Mont Blanc; Joule had with him his bride and a long ther-
mometer with which he was going to “try for elevation of tem-
perature in waterfalls.” The Horseshoe Falls at Niagara Falls is
167 ft high and has a summer daytime flow rate of 2.55 X
10° L/s. (a) Calculate the maximum possible temperature dif-
ference between the water at the top and at the bottom of the
falls. (The maximum possible increase occurs if no energy is



transferred to such parts of the surroundings as the rocks at the
base of the falls.) (b) Calculate the maximum possible internal-
energy increase of the 2.55 X 10° L that falls each second.
(Before it reaches the falls, more than half the water of the
Niagara River is diverted to a canal or underground tunnels for
use in hydroelectric power plants beyond the falls. These plants
generate 4.4 X 10° W. A power surge at one of these plants led
to the great blackout of November 9, 1965, which left 30 mil-
lion people in the northeast United States and Ontario, Canada,
without power for many hours.)

2.18 Imagine an isolated system divided into two parts, 1 and
2, by a rigid, impermeable, thermally conducting wall. Let heat
q, flow into part 1. Use the first law to show that the heat flow
for part 2 must be ¢, = —gq,.

2.19 Sometimes one sees the notation Ag and Aw for the heat
flow into a system and the work done during a process. Explain
why this notation is misleading.

2.20 Explain how liquid water can go from 25°C and 1 atm to
30°C and 1 atm in a process for which g < 0.

2.21 The potential energy stored in a spring is 3 kx2, where k
is the force constant of the spring and x is the distance the
spring is stretched from equilibrium. Suppose a spring with
force constant 125 N/m is stretched by 10.0 cm, placedin 112 g
of water in an adiabatic container, and released. The mass of the
spring is 20 g, and its specific heat capacity is 0.30 cal/(g °C).
The initial temperature of the water and the spring is 18.000°C.
The water’s specific heat capacity is 1.00 cal/(g °C). Find the
final temperature of the water.

2.22  Consider a system enclosed in a vertical cylinder fitted
with a frictionless piston. The piston is a plate of negligible
mass, on which is glued a mass m whose cross-sectional area is
the same as that of the plate. Above the piston is a vacuum.
(a) Use conservation of energy in the form dE + dEg,, = 0
to show that for an adiabatic volume change dE = —mg dh —
dK s, where dh is the infinitesimal change in piston height, g is
the gravitational acceleration, and dK is the infinitesimal
change in kinetic energy of the mass m. (b) Show that the equa-
tion in part (@) gives dwy,,, = —Py dV — dK; for the irre-
versible work done on the system, where P, is the pressure
exerted by the mass m on the piston plate.

2.23  Suppose the system of Prob. 2.22 is initially in equilib-
rium with P = 1.000 bar and ¥ = 2.00 dm>. The external mass
m 1is instantaneously reduced by 50% and held fixed thereafter,
so that P_, remains at 0.500 bar during the expansion. After un-
dergoing oscillations, the piston eventually comes to rest. The
final system volume is 6.00 dm?. Calculate w;

urev*

Section 2.5

2.24 True or false? (a) The quantities H, U, PV, AH, and
P AV all have the same dimensions. (b) AH is defined only for
a constant-pressure process. (c) For a constant-volume process
in a closed system, AH = AU.

2.25 Which of the following have the dimensions of energy:
force, work, mass, heat, pressure, pressure times volume,
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enthalpy, change in enthalpy, internal energy, force times
length?

2.26 The state function H used to be called “the heat content.”
(a) Explain the origin of this name. () Why is this name mis-
leading?

2.27 We showed AH = ¢ for a constant-pressure process.
Consider a process in which P is not constant throughout the
entire process, but for which the final and initial pressures are
equal. Need AH be equal to ¢ here? (Hint: One way to answer
this is to consider a cyclic process.)

2.28 A certain system is surrounded by adiabatic walls. The
system consists of two parts, 1 and 2. Each part is closed, is held
at constant P, and is capable of P-V work only. Apply AH = g,
to the entire system and to each part to show that ¢, + ¢, = 0
for heat flow between the parts.

Section 2.6
2.29 True or false? (a) C, is a state function. (b) Cp is an
extensive property.

2.30 (a) For CH,(g) at 2000 K and 1 bar, Cp,, = 94.4 Jmol ™!
K~!. Find C, of 586 g of CH,(g) at 2000 K and 1 bar. () For
C(diamond), Cp,, = 6.115 J mol~' K" at 25°C and 1 bar. For
a 10.0-carat diamond, find ¢, and C,. One carat = 200 mg.

2.31 For H,0O(J) at 100°C and 1 atm, p = 0.958 g/cm’. Find
the specific volume of H,O(/) at 100°C and 1 atm.

Section 2.7

2.32 (a) What state function must remain constant in the
Joule experiment? (b) What state function must remain con-
stant in the Joule-Thomson experiment?

2.33 For air at temperatures near 25°C and pressures in the
range 0 to 50 bar, the u,, values are all reasonably close to
0.2°C/bar. Estimate the final temperature of the gas if 58 g of
air at 25°C and 50 bar undergoes a Joule—Thomson throttling to
a final pressure of 1 bar.

2.34 Rossini and Frandsen found that, for air at 28°C and
pressures in the range 1 to 40 atm, (0U,,/dP); = —6.08 J mol !
atm™!. Calculate (0U,,/0V,,), for air at (a) 28°C and 1.00 atm;
() 28°C and 2.00 atm. [Hint: Use (1.35).]

2.35 (a) Derive Eq. (2.65). (b) Show that

wr = —(V/Cp)(kCypu; — kP + 1)
where « is defined by (1.44). [Hint: Start by taking (9/0P), of
H= U+ PV]

2.36 Is u, an intensive property? Is u, an extensive property?

Section 2.8

2.37 For a fixed amount of a perfect gas, which of these state-
ments must be true? (@) U and H each depend only on T (b) C,
is a constant. (¢) P dV = nR dT for every infinitesimal process.
(d) Cppy = Cypy = R (e) dU = C, dT for a reversible process.

2.38 (a) Calculate g, w, AU, and AH for the reversible
isothermal expansion at 300 K of 2.00 mol of a perfect gas from
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500 cm? to 1500 cm?®. (b) What would AU and w be if the
expansion connects the same initial and final states as in (a) but
is done by having the perfect gas expand into vacuum?

2.39 One mole of He gas with Cy,,, = 3R/2 essentially inde-
pendent of temperature expands reversibly from 24.6 L and
300 K to 49.2 L. Calculate the final pressure and temperature if
the expansion is (@) isothermal; (b) adiabatic. (¢) Sketch these
two processes on a P-} diagram.

2.40 For Ny(g), Cp,, is nearly constant at 3.5R = 29.1 J/(mol K)
for temperatures in the range 100 to 400 K and low or moderate
pressures. (a) Calculate g, w, AU, and AH for the reversible
adiabatic compression of 1.12 g of N,(g) from 400 torr and
1000 cm? to a final volume of 250 cm?. Assume perfect-gas be-
havior. (b) Suppose we want to cool a sample of N,(g) at room
T and P (25°C and 101 kPa) to 100 K using a reversible adia-
batic expansion. What should the final pressure be?

2.41 Find g, w, AU, and AH if 2.00 g of He(g) with C, |, = 3R
essentially independent of temperature undergoes (a) a re-
versible constant-pressure expansion from 20.0 dm? to
40.0 dm? at 0.800 bar; (b) a reversible heating with P going
from 0.600 bar to 0.900 bar while V remains fixed at 15.0 dm?.

Section 2.9

2.42 True or false? (a) A thermodynamic process is defined
by the final state and the initial state. (b) AT = 0 for every
isothermal process. (¢) Every process that has AT = 0 is an
isothermal process. (d) AU = 0 for a reversible phase change at
constant 7" and P. (e) ¢ must be zero for an isothermal process.
(f) AT must be zero for an adiabatic process.

2.43 State whether each of the following is a property of a
thermodynamic system or refers to a noninfinitesimal process:

(@) g; (b) U; (¢) AH; (d) w; (e) Cy; (f) pyps (8) H.

2.44  Give the value of C, [Eq. (2.50)] for (a) the melting of
ice at 0°C and 1 atm; (b) the freezing of water at 0°C and 1 atm;
(c) the reversible isothermal expansion of a perfect gas; (d) the
reversible adiabatic expansion of a perfect gas.

2.45 (This problem is especially instructive.) For each of the
following processes deduce whether each of the quantities ¢, w,
AU, and AH is positive, zero, or negative. (a) Reversible melt-
ing of solid benzene at 1 atm and the normal melting point.
(b) Reversible melting of ice at 1 atm and 0°C. (¢) Reversible
adiabatic expansion of a perfect gas. (d) Reversible isothermal
expansion of a perfect gas. (e) Adiabatic expansion of a perfect
gas into a vacuum (Joule experiment). (f) Joule—Thomson adi-
abatic throttling of a perfect gas. (g) Reversible heating of a
perfect gas at constant P. (7) Reversible cooling of a perfect gas
at constant V.

2.46 For each process state whether each of g, w, and AU is
positive, zero, or negative. (¢) Combustion of benzene in a
sealed container with rigid, adiabatic walls. (b) Combustion of
benzene in a sealed container that is immersed in a water bath
at 25°C and has rigid, thermally conducting walls. (¢) Adiabatic
expansion of a nonideal gas into vacuum.

2.47 One mole of liquid water at 30°C is adiabatically com-
pressed, P increasing from 1.00 to 10.00 atm. Since liquids and
solids are rather incompressible, it is a fairly good approxima-
tion to take ¥ as unchanged for this process. With this approx-
imation, calculate ¢, AU, and AH for this process.

2.48 The molar heat capacity of oxygen at constant pressure
for temperatures in the range 300 to 400 K and for low or mod-
erate pressures can be approximated as Cp,, = a + b7, where
a = 6.15 cal mol™! K~! and » = 0.00310 cal mol~! K2,
(a) Calculate ¢, w, AU, and AH when 2.00 mol of O, is re-
versibly heated from 27°C to 127°C with P held fixed at
1.00 atm. Assume perfect-gas behavior. (b) Calculate g, w, AU,
and AH when 2.00 mol of O, initially at 1.00 atm is reversibly
heated from 27°C to 127°C with V" held fixed.

2.49 For this problem use 333.6 J/g and 2256.7 J/g as the la-
tent heats of fusion and vaporization of water at the normal
melting and boiling points, ¢, = 4.19 J g7! K™! for liquid
water, p = 0.917 g/cm? for ice at 0°C and 1 atm, p = 1.000 g/cm?
and 0.958 g/cm? for water at 1 atm and 0°C and 100°C, respec-
tively. (For liquid water, ¢, varies slightly with 7. The value
given is an average over the range 0°C to 100°C; see Fig. 2.15.)
Calculate ¢, w, AU, and AH for (@) the melting of 1 mol of ice
at 0°C and 1 atm; (b) the reversible constant-pressure heating
of 1 mol of liquid water from 0°C to 100°C at 1 atm; (c) the
vaporization of 1 mol of water at 100°C and 1 atm.

2.50 Calculate AU and AH for each of the following changes
in state of 2.50 mol of a perfect monatomic gas with Cy,, =
1.5R for all temperatures: (a) (1.50 atm, 400 K) — (3.00 atm,
600 K); (b) (2.50 atm, 20.0 L) — (2.00 atm, 30.0 L);
(c) (28.5L, 400 K) — (42.0 L, 400 K).

2.51 Can g and w be calculated for the processes of Prob. 2.50?
If the answer is yes, calculate them for each process.

2.52 For a certain perfect gas, Cp,,, = 2.5R at all tempera-
tures. Calculate ¢, w, AU, and AH when 2.00 mol of this gas
undergoes each of the following processes: (a) a reversible
isobaric expansion from (1.00 atm, 20.0 dm?) to (1.00 atm,
40.0 dm?); (b) a reversible isochoric change of state from
(1.00 atm, 40.0 dm?) to (0.500 atm, 40.0 dm?); (c) a reversible
isothermal compression from (0.500 atm, 40.0 dm?®) to
(1.00 atm, 20.0 dm?). Sketch each process on the same P-V di-
agram and calculate ¢, w, AU, and AH for a cycle that consists
of steps (a), (b), and (¢).

Section 2.11

2.53 Classify each of the following as kinetic energy, poten-
tial energy, or both: («) translational energy; (b) rotational
energy; (c¢) vibrational energy; (d) electronic energy.

2.54 Explain why C,,, of He gas at 10 K and 1 atm is larger
than 3R.

2.55 (a) Calculate the volume of 1 mole of ideal gas at 25°C
and 1 atm. Let the gas be in a cubic container. If the gas mol-
ecules are distributed uniformly in space with equal spacing
between adjacent molecules (of course, this really isn’t so), the



gas volume can be divided into Avogadro’s number of imagi-
nary equal-sized cubes, each cube containing a molecule at its
center. Calculate the edge length of each such cube. (b) What is
the distance between the centers of the uniformly distributed
gas molecules at 25°C and 1 atm? (¢) Answer (b) for a gas at
25°C and 40 atm.

2.56 Estimate Cp,, and Cp, at 300 K and 1 atm for (@) Ne(g);
(b) CO(g).

2.57 Use Fig. 2.15 to decide whether U, ., of liquid water
increases or decreases as 7' increases.

General

2.58 (a) Use Rumford’s data given in Sec. 2.4 to estimate the
relation between the “old” calorie (as defined in Sec. 2.3) and
the joule. Use 1 horsepower = 746 W. (b) The same as
(a) using Joule’s data given in Sec. 2.4.

2.59 Students often make significant-figure errors in taking
reciprocals, in taking logs and antilogs, and in taking the dif-
ference of nearly equal numbers. (a) For a temperature of
1.8°C, calculate T~! (where T is the absolute temperature) to
the proper number of significant figures. (») Find the common
logs of the following numbers: 4.83 and 4.84; 4.83 X 10?° and
4.84 X 10%. From the results, formulate a rule as to the proper
number of significant figures in the log of a number known to
n significant figures. (c) Calculate (210.6 K)™! — (211.5 K)~!
to the proper number of significant figures.

2.60 (a) A gas obeying the van der Waals equation of state
(1.39) undergoes a reversible isothermal volume change from
V| to V,. Obtain the expression for the work w. Check that your
result reduces to (2.74) for a = 0 = b. (b) Use the result of
(a) to find w for 0.500 mol of N, expanding reversibly from
0.400 L to 0.800 L at 300 K. See Sec. 8.4 for the ¢ and b val-
ues of N,. Compare the result with that found if N, is assumed
to be a perfect gas.

2.61 (a) If the temperature of a system decreases by 8.0°C,
what is AT in kelvins? (b) A certain system has C, = 5.00 J/°C.
What is its C, in joules per kelvin?

2.62 Explain why Boyle’s law PV = constant for an ideal gas
does not contradict the equation PV” = constant for a revers-
ible adiabatic process in a perfect gas with C,, constant.

2.63 Point out the error in the Sec. 2.12 reasoning that gave
q = 0 for a reversible isothermal process in a perfect gas.

2.64 A perfect gas with C),, = 3R independent of T expands
adiabatically into a vacuum, thereby doubling its volume. Two
students present the following conflicting analyses. Genevieve
uses Eq. (2.76) to write T,/T, = (V,/2V)?*® and T, = T,/2'5.
Wendy writes AU =¢ +w =0+ 0= 0and AU = C), AT, so
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AT = 0 and T, = T,. Which student is correct? What error did
the other student make?

2.65 A perfect gas undergoes an expansion process at con-
stant pressure. Does its internal energy increase or decrease?
Justify your answer.

2.66 Classify each of the following properties as intensive or
extensive and give the SI units of each: (a) density; (b) U;
(¢) Hy; (d) Cp; (€) cp; (f) Cps (g) P (h) molar mass; (i) T

2.67 A student attempting to remember a certain formula
comes up with C, — C), = TVa"/k", where m and n are certain
integers whose values the student has forgotten and where the
remaining symbols have their usual meanings. Use dimensional
considerations to find m and n.

2.68 Because the heat capacities per unit volume of gases are
small, accurate measurement of C,, or C), for gases is not easy.
Accurate measurement of the heat-capacity ratio vy of a gas (for
example, by measurement of the speed of sound in the gas) is
easy. For gaseous CCl, at 0.1 bar and 20°C, experiment gives
vy = 1.13. Find Cp, and Cy,,, for CCly(g) at 20°C and 1 bar.

2.69 Give the SI units of each of the following properties
and state whether each is extensive or intensive. (@) (0V/0T)p;
(D) V"X oVIdT)p; () (OV,10P) 15 (d) (AUIOV ) (e) (9*VIaT?)p.

2.70 State whether or not each of the following quantities is
infinitesimally small. (@) AV; (b) dw,,,; (¢) (0H/9T)p; (d) V dP.

2.71 True or false? (a) AH is a state function. (b) C} is inde-
pendent of T for every perfect gas. (¢) AU = ¢ + w for every
thermodynamic system at rest in the absence of external fields.
(d) A process in which the final temperature equals the initial
temperature must be an isothermal process. (¢) For a closed sys-
tem at rest in the absence of external fields, U = ¢ + w.
(f) U remains constant in every isothermal process in a closed
system. (g) ¢ = 0 for every cyclic process. (2) AU = 0 for every
cyclic process. (i) AT = 0 for every adiabatic process in a closed
system. () A thermodynamic process is specified by specifying
the initial state and the final state of the system. (k) If a closed
system at rest in the absence of external fields undergoes an adi-
abatic process that has w = 0, then the system’s temperature
must remain constant. (/) P-V work is usually negligible for
solids and liquids. (m) If neither heat nor matter can enter or
leave a system, that system must be isolated. (#) For a closed
system with P-J" work only, a constant-pressure process that has
g > 0must have AT > 0. (0) [3 (1/V) dV = In(V, — V). (p) The
value of AU is independent of the path (process) used to go from
state 1 to state 2. (¢) For any process, AT = A¢, where T and ¢ are
the Kelvin and Celsius temperatures. () If ¢ = 0 for a process,
then the process must be isothermal. (s) For a reversible process,
P must be constant. () [ %(1/ T)dT = (In T,)/(In T)). (u) If the final
temperature equals the initial temperature, the process must be an
isothermal process. (v) [7:T dT = (T, — T)™



