Numbers,
Measurements,
and Numerical
Mathematics

Preview

The first application of mathematics to chemistry deals with various physical quan-
tities that have numerical values. In this chapter, we introduce the correct use of
numerical values to represent measured physical quantities and the use of numer-
ical mathematics to calculate values of other quantities. Such values generally
consist of a number and a unit of measurement, and both parts of the value must
be manipulated correctly. We introduce the use of significant digits to communi-
cate the probable accuracy of the measured value. We also review the factor-label
method, which is a routine method of expressing a measured quantity in terms of
a different unit of measurement.

Principal Facts and Ideas

1. Specification of a measured quantity consists of a number and a unit.

2. A unit of measurement is an arbitrarily defined quantity that people have
agreed to use.

3. The SI units have been officially adopted by international organizations of
physicists and chemists.

4. Consistent units must be used in any calculation.

5. The factor-label method can be used to convert from one unit of measurement
to another.

6. Reported values of all quantities should be rounded so that insignificant digits
are not reported.
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Objectives
After you have studied the chapter, you should be able to:

1. use numbers and units correctly to express measured quantities;

2. understand the relationship of uncertainties in measurements to the use of sig-
nificant digits;

3. use consistent units, especially the SI units, in equations and formulas; and

4. use the factor-label method to convert from one unit of measurement to an-
other.

E Numbers and Measurements

The most common use that chemists make of numbers is to report values for mea-
sured quantities. Specification of a measured quantity generally includes a number
and a unit of measurement. For example, a length might be given as 12.00 inches
(12.001in) or 30.48 centimeters (30.48 cm), or 0.3048 meters (0.3048 m), and so
on. Specification of the quantity is not complete until the unit of measurement is
specified. For example, 30.48 cm is definitely not the same as 30.48 in. We dis-
cuss numbers in this section of the chapter, and will use some common units of
measurement. We discuss units in the next section.

Numbers

There are several sets into which we can classify numbers. The numbers that can
represent physical quantities are called real numbers. These are the numbers with
which we ordinarily deal, and they consist of a magnitude and a sign, which can be
positive or negative. Real numbers can range from positive numbers of indefinitely
large magnitude to negative numbers of indefinitely large magnitude. Among the
real numbers are the integers 0, &1, +2, £3, and so on, which are part of the
rational numbers. Other rational numbers are quotients of two integers, such as
%, g, g—g Fractions can be represented as decimal numbers. For example, % is
the same as 0.0625. Some fractions cannot be represented exactly by a decimal
number with a finite number of nonzero digits. For example, % is represented by
0.333333 - ... The three dots (an ellipsis) that follow the given digits indicate that
more digits follow. In this case, infinitely many digits are required for an exact
representation. However, the decimal representation of a rational number either

has a finite number of nonzero digits or contains a repeating pattern of digits.

|EXERCISE 1.1 | Take a few simple fractions, such as %, %, or % and ex-

press them as decimal numbers, finding either all of the nonzero digits or the
repeating pattern of digits. [«

The numbers that are not rational numbers are called irrational numbers. Al-
gebraic irrational number include square roots of rational numbers, cube roots of
rational numbers, and so on, which are not themselves rational numbers. All of
the rest of the real numbers are called transcendental irrational numbers. Two
commonly encountered transcendental irrational numbers are the ratio of the cir-
cumference of a circle to its diameter, called 7 and given by 3.141592653 - - -, and
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the base of natural logarithms, called e and given by 2.718281828 - - - . Irrational
numbers have the property that if you have some means of finding what the correct
digits are, you will never reach a point beyond which all of the remaining digits are
zero, or beyond which the digits form some other repeating pattern. !

In addition to real numbers, mathematicians have defined imaginary numbers
into existence. The imaginary unit, i, is defined to equal ~/—1. An imaginary
number is equal to a real number times i, and a complex number is equal to a
real number plus an imaginary number. If x and y are real numbers, then the
quantity z = x + iy is a complex number. x is called the real part of z, and the
real number y is called the imaginary part of z. Imaginary and complex numbers
cannot represent physically measurable quantities, but turn out to have important
applications in quantum mechanics. We will discuss complex numbers in the next
chapter.

The numbers that we have been discussing are called scalars, to distinguish
them from vectors. A scalar number has magnitude and sign, and a vector has both
magnitude and direction. We will discuss vectors later, and will see that a vector
can be represented by several scalars.

Measurements, Accuracy, and Significant Digits

A measured quantity can almost never be known with complete exactness. It is
therefore a good idea to communicate the probable accuracy of a reported mea-
surement. For example, assume that you measured the length of a piece of glass
tubing with a meter stick and that your measured value was 387.8 millimeters
(387.8 mm). You decide that your experimental error was probably no greater than
0.6 mm. The best way to specify the length of the glass tubing is

length = 387.8 mm 0.6 mm

If for some reason you cannot include a statement of the probable error, you should
at least avoid including digits that are probably wrong. In this case, your estimated
error is somewhat less than 1 mm, so the correct number is probably closer to
388 mm than to either 387 mm or 389 mm. If we do not want to report the expected
experimental error, we report the length as 388 mm and assert that the three digits
given are significant digits. This means that the given digits are correctly stated.
If we had reported the length as 387.8 mm, the last digit is insignificant. That is,
if we knew the exact length, the digit 8 after the decimal point is probably not the
correct digit, since we believe that the correct length lies between 387.2 mm and
388.4 mm.

You should always avoid reporting digits that are not significant. When you
carry out calculations involving measured quantities, you should always determine
how many significant digits your answer can have and round off your result to
that number of digits. When values of physical quantities are given in a physical
chemistry textbook or in this book, you can assume that all digits specified are
significant. If you are given a number that you believe to be correctly stated, you
can count the number of significant digits. If there are no zeros in the number, the
number of significant digits is just the number of digits. If the number contains
one or more zeros, any zero that occurs between nonzero digits does count as a

1t has been said that early in the twentieth century the legislature of the state of Indiana, in an effort to simplify
things, passed a resolution that henceforth in that state, 7 should be exactly equal to 3.
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significant digit. Any zeros that are present only to specify the location of a deci-
mal point do not represent significant digits. For example, the number 0.0000345
contains three significant digits, and the number 0.003045 contains four signifi-
cant digits. The number 76,000 contains only two significant digits. However,
the number 0.000034500 contains five significant digits. The zeros at the left are
present only to locate the decimal point, but the final two zeros are not needed to
locate a decimal point, and therefore must have been included because the number
is known with sufficient accuracy that these digits are significant.

A problem arises when zeros that appear to occur only to locate the decimal
point are actually significant. For example, if a mass is known to be closer to 3500
grams (3500 g) than to 3499 g or to 3501 g, there are four significant digits. If one
simply wrote 3500 g, persons with training in significant digits would assume that
the zeros are not significant and that there are two significant digits. Some people
communicate the fact that there are four significant digits by writing 3500. grams.
The explicit decimal point communicates the fact that the zeros are significant
digits. Others put a bar over any zeros that are significant, writing 3500 to indicate
that there are four significant digits.

Scientific Notation

The communication difficulty involving significant zeros can be avoided by the use
of scientific notation, in which a number is expressed as the product of two factors,
one of which is a number lying between 1 and 10 and the other is 10 raised to some
integer power. The mass mentioned above would thus be written as 3.500 x 103 g.
There are clearly four significant digits indicated, since the trailing zeros are not
required to locate a decimal point. If the mass were known to only two significant
digits, it would be written as 3.5 x 103 g.

Scientific notation is also convenient for extremely small or extremely large
numbers. For example, Avogadro’s constant, the number of molecules or other
formula units per mole, is easier to write as 6.02214 x 102> mol~! than as
602,214,000,000,000,000,000,000 mol_l, and the charge on an electron is eas-
ier to write and read as 1.60217 x 10~!? coulomb (1.60217 x 10~!° C) than as
0.000000000000000000160217 C.

|EXERCISE 1.2 b | Convert the following numbers to scientific notation, us-
ing the correct number of significant digits:
(a) 0.000598 (b) 67,342,000
(c) 0.000002 (d) 6432.150
[«
Rounding

The process of rounding is straightforward in most cases. The calculated num-
ber is simply replaced by that number containing the proper number of digits that
is closer to the calculated value than any other number containing this many dig-
its. Thus, if there are three significant digits, 4.567 is rounded to 4.57, and 4.564
is rounded to 4.56. However, if your only insignificant digit is a 5, your cal-
culated number is midway between two rounded numbers, and you must decide
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whether to round up or to round down. It is best to have a rule that will round
down half of the time and round up half of the time. One widely used rule is to
round to the even digit, since there is a 50% chance that any digit will be even.
For example, 2.5 would be rounded to 2, and 3.5 would be rounded to 4. An
equally valid procedure that is apparently not generally used would be to toss a
coin and round up if the coin comes up “heads” and to round down if it comes up

“tails.”
|EXERCISE 1.3 b | Round the following numbers to four significant digits
(a) 0.2468985 (b) 78955
(c) 123456789 (d) 46.4535

E Numerical Mathematical Operations

We are frequently required to carry out numerical operations on numbers. The first
such operations involve pairs of numbers.

Elementary Arithmetic Operations

The elementary mathematical operations are addition, subtraction, multiplication,
and division. Some rules for operating on numbers with sign can be simply stated:

1. The product of two factors of the same sign is positive, and the product of two
factors of different signs is negative.

2. The quotient of two factors of the same sign is positive, and the quotient of two
factors of different signs is negative.

3. The difference of two numbers is the same as the sum of the first number and
the negative of the second.

4. Multiplication is commutative, which means that” if ¢ and b stand for numbers

axb=>bxa. (1.1)

5. Multiplication is associative, which means that

ax (bxc)=(axb)xec. (1.2)

6. Multiplication and addition are distributive, which means that

axb+c)=axb+axc. (1.3)

2We enclose equations that you will likely use frequently in a box.
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Additional Mathematical Operations

In addition to the four elementary arithmetic operations, there are some other im-
portant mathematical operations, many of which involve only one number. The
magnitude, or absolute value, of a scalar quantity is a number that gives the size
of the number irrespective of its sign. It is denoted by placing vertical bars before
and after the symbol for the quantity. This operation means

x ifx>0

1.4
—x ifx <0 (1.4)

x| =

For example,

14.5] = 4.5
|=3] =3

The magnitude of a number is always nonnegative (positive or zero).

Another important set of numerical operations is the taking of powers and roots.
If x represents some number that is multiplied by itself n — 1 times so that there
are n factors, we represent this by the symbol x”, representing x to the nth power.
For example,

=xxx, xX*=xxxxx, x"=xxxxxx---xx (nfactors). (1.5)

The number n in the expression x” is called the exponent of x. If the exponent
is not an integer, we can still define x". We will discuss this when we discuss
logarithms. An exponent that is a negative number indicates the reciprocal of the
quantity with a positive exponent:

x =1 x3= % (1.6)

x4xb = xatb (1.7)

where x, a, and b represent numbers. We call such an equation an identity, which
means that it is correct for all values of the variables in the equation. The next
identity is

(x®)P = xab (1.8)

Roots of real numbers are defined in an inverse way from powers. For example,
the square root of x is denoted by /x and is defined as the number that yields x
when squared:

(Vx)? =x (1.9)

The cube root of x is denoted by /x, and is defined as the number that when cubed
(raised to the third power) yields x:

(V%) =x (1.10)
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Fourth roots, fifth roots, and so on, are defined in similar ways. The operation of
taking a root is the same as raising a number to a fractional exponent. For example,

Sx =x13 (1.11)

This equation means that
(Vx) = ' =x = )P = Va3,

This equation illustrates the fact that the order of taking a root and raising to a
power can be reversed without changing the result. We say that these operations
commute with each other.

There are two numbers that when squared will yield a given positive real num-
ber. For example, 2> = 4 and (—2)> = 4. When the symbol V4 is used, only the
positive square root, 2, is meant. To specify the negative square root of x, we write
—4/x. If we confine ourselves to real numbers, there is no square root, fourth root,
sixth root, and so on, of a negative number. In Section 2.6, we define imaginary
numbers, which are defined be square roots of negative quantities. Both positive
and negative numbers can have real cube roots, fifth roots, and so on, since an odd
number of negative factors yields a negative product.

The square roots, cube roots, and so forth, of integers and other rational num-
bers are either rational numbers or algebraic irrational numbers. The square root
of 2 is an example of an algebraic irrational number. An algebraic irrational num-
ber produces a rational number when raised to the proper integral power. When
written as a decimal number, an algebraic irrational number does not have a finite
number of nonzero digits or exhibit any pattern of repeating digits. An irrational
number that does not produce a rational number when raised to any integral power
is a transcendental irrational number. Examples are e, the base of natural loga-
rithms, and 77, the ratio of a circle’s circumference to its diameter.

Logarithms

We have discussed the operation of raising a number to an integral power. The
expression a? means a x a, a—% means l/az, a’ means a X a X a, and so on. In
addition, you can have exponents that are not integers. If we write

y=a' (1.12)
the exponent x is called the logarithm of y to the base a and is denoted by

x = log, () (1.13)

If a is positive, only positive numbers possess real logarithms.

Common Logarithms

If the base of logarithms equals 10, the logarithms are called common logarithms:
If 10® = y, then x is the common logarithm of y, denoted by log;q(y). The
subscript 10 is sometimes omitted, but this can cause confusion.
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For integral values of x, it is easy to generate the following short table of com-
mon logarithms:

y x=logo(» | y  x=log,y()

1 0 0.1 -1

10 1 0.01 -2
100 2 0.001 -3
1000 3 etc.

In order to understand logarithms that are not integers, we need to understand
exponents that are not integers.

EXAMPLE 1.1 Find the common logarithm of +/10.

SOLUTION » The square root of 10 is the number that yields 10 when multiplied by itself:

2
(V10)” =10.
We use the fact about exponents
(a*)* = a*. (1.14)
Since 10 is the same thing as 10,
V10 = 101/2, (1.15)

Therefore |
log;o (vlo) = log(3.162277...) = 5 = 0.5000

<

Equation (1.14) and some other relations governing exponents can be used to
generate other logarithms, as in the following problem.

|EXERCISE 1.4 p | Use Eq. (1.14) and the fact that 10" = 1/(10") to gen-
erate the negative logarithms in the short table of logarithms. [«

We will not discuss further how the logarithms of various numbers are com-
puted. Extensive tables of logarithms with up to seven or eight significant digits
were once in common use. Most electronic calculators provide values of loga-
rithms with as many as 10 or 11 significant digits. Before the invention of elec-
tronic calculators, tables of logarithms were used when a calculation required more
significant digits than a slide rule could provide. For example, to multiply two
numbers together, one would look up the logarithms of the two numbers, add the
logarithms and then look up the antilogarithm of the sum (the number possessing
the sum as its logarithm).

Natural Logarithms

Besides 10, there is another commonly used base of logarithms. This is a transcen-
dental irrational number called e and equal to 2.7182818. ..

Ife? =x theny =log,(x) = In(x). (1.16)
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Logarithms to this base are called natural logarithms. The definition of e is?

1 n
e= lim (1+—> =2.7182818.. .. (1.17)

n— o0 n

The “lim” notation means that larger and larger values of n are taken.

|EXERCISE 1.5 P> | Evaluate the quantity (1 + %)” for several integral values
of n ranging from 1 to 1, 000, 000. Notice how the value approaches the value
of e as n increases. [«

The notation In(x) is more common than log.(x). Natural logarithms are also
occasionally called Napierian logarithms.* Unfortunately, some mathematicians
use the symbol log(y) without a subscript for natural logarithms. Chemists fre-
quently use the symbol log(y) without a subscript for common logarithms and the
symbol In (y) for natural logarithms. Chemists use both common and natural log-
arithms, so the best practice is to use log;(x) for the common logarithm of x and
In(x) for the natural logarithm of x.

If the common logarithm of a number is known, its natural logarithm can be
computed as

) = 1plog0®) — <eln(10))logm(y) = 101080, (1.18)

The natural logarithm of 10 is equal to 2.302585 . .., so we can write

In () = In(10) log,(y) = (2.302585 - - - ) log;o() | (1.19)

In order to remember Eq. (1.19) correctly, keep the fact in mind that since e is
smaller than 10, the natural logarithm is larger than the common logarithm.

|EXERCISE 1.6 b | Without using a calculator or a table of logarithms, find
the following:
(a) In(100.000) (b) In(0.0010000)

(c) logg(e)

Al

Logarithm Identities

There are a number of identities involving logarithms, some of which come from
the exponent identities in Egs. (1.6)—(1.8). Table 1.1 lists some identities involv-
ing exponents and logarithms. These identities hold for common logarithms and
natural logarithms as well for logarithms to any other base.

3The base of natural logarithms, e, is named after Leonhard Euler, 1707-1783, a great Swiss mathematician.
4Naperian logarithms are named after John Napier, 1550-1617, a Scottish landowner, theologian, and mathe-
matician, who was one of the inventors of logarithms.
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TABLE 1.1 » Properties of Exponents and Logarithms
Exponent fact Logarithm fact

a’=1 log, (1) =0
a2 =ya g, (va)=}
a'=a log, (a) =1

a‘'a® = a2 log, (y1y2) = log, (y1) + log, (y2)

a7t =k log, (L) =—log, )

X
a‘'l _ _xj—x
Tz_al 2

log, () = log, (v1) — log, ()
(@*)* =a* log, (y°) = zlog, ()

a® =0 log, (00) = o0
a®=0 log, (0) = —o0
X

o

3

]

!0,.
]

L ——

Figure 1.1 » The exponential function.

The Exponential

The exponential is the same as raising e (the base of natural logarithms, equal to
2.7182818284 - - -) to a given power and is denoted either by the usual notation for
a power, or by the notation exp(: - - ).
y = ae’® = aexp (bx), (1.20)

Figure 1.1 shows a graph of this function for b > 0.

The graph in Fig. 1.1 exhibits an important behavior of the exponential ”*. For
b > 0, it doubles each time the independent variable increases by a fixed amount
whose value depends on the value of b. For large values of b the exponential
function becomes large very rapidly. If b < 0, the function decreases to half its
value each time the independent variable increases by a fixed amount. For large
negative values of b the exponential function becomes small very rapidly.

|EXERCISE 1.7 b | For a positive value of b find an expression for the change
in x required for the function ¢”*to double in size. [«
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An example of the exponential function is in the decay of radioactive isotopes.

If Ny is the number of atoms of the isotope at time ¢ = 0, the number at any other
time, ¢, is given by

N(1) = Noe™ /7, (1.21)

where 7 is called the relaxation time. It is the time for the number of atoms of the
isotope to drop to 1/e = 0.367879 of its original value. The time that is required
for the number of atoms to drop to half its original value is called the Aalf-time or
half-life, denoted by 7.

EXAMPLE 1.2 Show that 71> is equal to 7 In(2).

SOLUTION » If1y; is the half-life, then
1

e N2/t —
2
Thus
t 1
A2 (-) —InQ). (1.22)
T 2
|
|EXERCISE 1.8 b | A certain population is growing exponentially and dou-

bles in size each 30 years.

(a) If the population includes 4.00 x 10° individuals at 7 = 0, write the formula
giving the population after a number of years equal to ¢.

(b) Find the size of the population at ¢+ = 150 years. [«

|EXERCISE 1.9 b | A reactant in a first-order chemical reaction without back
reaction has a concentration governed by the same formula as radioactive de-
cay,

[Al; = [Aloe™,

where [A]y is the concentration at time ¢ = 0, [A]; is the concentration at time
t, and k is a function of temperature called the rate constant. If k = 0.123s7!,
find the time required for the concentration to drop to 21.0% of its initial value.

&

E Units of Measurement

The measurement of a length or other variable would be impossible without a stan-
dard definition of the unit of measurement. For many years science and com-
merce were hampered by the lack of accurately defined units of measurement.
This problem has been largely overcome by precise measurements and interna-
tional agreements. The internationally accepted system of units of measurements
is called the Systéme International d’Unités, abbreviated SI. This is an MKS sys-
tem, which means that length is measured in meters, mass in kilograms, and time
in seconds. In 1960 the international chemical community agreed to use SI units,
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TABLE 1.2 » Sl Units

SI base units (units with independent definitions)

Physical Name of

quantity unit Symbol Definition

Length meter m Length such that the speed of light is exactly
299,792,458 ms™".

Mass kilogram kg The mass of a platinum-iridium cylinder kept

at the International Bureau of Weights and
Measures in France.
Time second S The duration of 9,192,631,770 cycles of the
radiation of a certain emission of the cesium atom.
Electric current ampere A The magnitude of current which, when flowing
in each of two long parallel wires 1 m apart in
free space, results in a force of 2 X 107N
per meter of length.
Temperature kelvin K Absolute zero is 0 K; triple point of water is 273.16 K.
Luminous intensity candela cd The luminous intensity, in the perpendicular
intensity direction, of a surface of 1/600, 000 m?
of a black body at temperature of freezing
platinum at a pressure of 101,325 N m~2,
Amount of substance mole. mol Amount of substance that contains as
many elementary units as there are carbon
atoms in exactly 0.012 kg of the carbon-12 2¢)

isotope.
Other SI units (derived units)

Physical Name of Physical
quantity unit dimensions Symbol Definition
Force newton kgms2 N IN = lkgms™2
Energy joule kgm?s~2 J 1] =1kgm?s~?
Electrical charge coulomb As C I1C=1As
Pressure pascal Nm™? Pa 1Pa=1Nm™?
Magnetic field tesla kgs2A~l T 1T=1kgs2A"!

=1Wbm™2
Luminous flux lumen cdsr Im Ilm = lcdsr

(sr = steradian)

which had been in use by physicists for some time.> The seven base units given in
Table 1.2 form the heart of the system. The table also includes some derived units,
which owe their definitions to the definitions of the seven base units.

Multiples and submultiples of SI units are commonly used.® Examples are the
millimeter and kilometer. These multiples and submultiples are denoted by stan-
dard prefixes attached to the name of the unit, as listed in Table 1.3. The abbrevi-
ation for a multiple or submultiple is obtained by attaching the prefix abbreviation

3See “Policy for NBS Usage of SI Units,” J. Chem. Educ. 48, 569 (1971).

6There is a possibly apocryphal story about Robert A. Millikan, a Nobel-prize-winning physicist who was
not noted for false modesty. A rival is supposed to have told Millikan that he had defined a new unit for the
quantitative measure of conceit and had named the new unit the kan. However, 1 kan was an exceedingly large
amount of conceit so for most purposes the practical unit was to be the millikan.
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TABLE 1.3 » Prefixes for Multiple and Submultiple Units
Multiple Prefix Abbreviation | Multiple Prefix Abbreviation

1012 tera- T 10-3 milli- m
10° giga- G 107° micro- m
10° mega- M 10-° nano- n
103 kilo- k 10712 pico- p

1 — — 10-15  femto- f
107! deci- d 10-18 atto- a
1072 centi- c

to the unit abbreviation, as in Gm (gigameter) or ns (nanosecond). Note that since
the base unit of length is the kilogram, the table would imply the use of things
such as the mega kilogram. Double prefixes are not used. We use gigagram instead
of megakilogram. The use of the prefixes for 10! and 102 is discouraged, but
centimeters will probably not be abandoned for many years to come. The Celsius
temperature scale also remains in common use among chemists.

Some non-SI units continue to be used, such as the atmosphere (atm), which
is a pressure defined to equal 101,325Nm™2 (101, 325 Pa), the liter (1), which
is exactly 0.001 m>, and the torr, which is a pressure such that exactly 760 torr
equals exactly 1 atm. The Celsius temperature scale is defined such that the degree
Celsius (°C) is the same size as the kelvin, and 0 °C is equivalent to 273.15 K.

In the United States of America, English units of measurement are still in com-
mon use. The inch (in) has been redefined to equal exactly 0.0254 m. The foot (ft)
is 12 inches and the mile (mi) is 5280 feet. The pound (1b) is equal to 0.4536 kg
(not an exact definition; good to four significant digits).

Any measured quantity is not completely specified until its units are given. If a
is a length equal to 10.345 m, one must write

a=10.345m (1.23)

not just
a = 10.345 (not correct).

It is permissible to write
a/m = 10.345

which means that the length a divided by 1 m is 10.345, a dimensionless number.
When constructing a table of values, it is convenient to label the columns or rows
with such dimensionless quantities.

When you make numerical calculations, you should make certain that you use
consistent units for all quantities. Otherwise, you will likely get the wrong answer.
This means that (1) you must convert all multiple and submultiple units to the base
unit, and (2) you cannot mix different systems of units. For example, you cannot
correctly substitute a length in inches into a formula in which the other quantities
are in SI units without converting. It is a good idea to write the unit as well as the
number, as in Eq. (1.23), even for scratch calculations. This will help you avoid
some kinds of mistakes by inspecting any equation and making sure that both sides
are measured in the same units. In 1999 a U.S. space vehicle optimistically named
the Mars Climate Orbiter crashed into the surface of Mars instead of orbiting the
planet. The problem turned out to be that engineers working on the project had
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used English units such as feet and pounds, whereas physicists had used metric
units such as meters and kilograms. A failure to convert units properly cost U.S.
taxpayers several millions of dollars and the loss of a possibly useful mission. In
another instance, when a Canadian airline switched from English units to metric
units, a ground crew miscalculated the mass of fuel needed for a flight. The jet
airplane ran out of fuel, but was able to glide to an unused military airfield and
make a “deadstick” landing. Some people were having a picnic on the unused
runway, but were able to get out of the way. There was even a movie made about
the incident.

Numerical Calculations

The most common type of numerical calculation in a chemistry course is the cal-
culation of one quantity from the numerical values of other quantities, guided by
some formula. There can be familiar formulas that are used in everyday life and
there can be formulas that are specific to chemistry. Some formulas require only
the four basic arithmetic operations: addition, subtraction, multiplication, and di-
vision. Other formulas require the use of the exponential, logarithms, or trigono-
metric functions. The formula is a recipe for carrying out the specified numerical
operations. Each quantity is represented by a symbol (a letter) and the operations
are specified by symbols such as x, /, +, —, In, and so on. A simple example is the
familiar formula for calculating the volume of a rectangular object as the product
of its height (&), width (w), and length (/):

V=hxwxl

The symbol for multiplication is often omitted so that the formula would be written
v = hwl. If two symbols are written side by side, it is understood that the quanti-
ties represented by the symbols are to be multiplied together. Another example is

the ideal gas equation
nRT

P = (1.24)

where P represents the pressure of the gas, n is the amount of gas in moles, T is
the absolute temperature, V is the volume, and R is a constant known as the ideal
gas constant.

Significant Digits in a Calculated Quantity

When you calculate a numerical value that depends on a set of numerical values
substituted into a formula, the accuracy of the result depends on the accuracy of
the first set of values. The number of significant digits in the result depends on
the numbers of significant digits in the first set of values. Any result containing
insignificant digits must be rounded to the proper number of digits.

Multiplication and Division

There are several useful rules of thumb that allow you to determine the proper
number of significant digits in the result of a calculation. For multiplication of
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two or more factors, the rule is that the product will have the same number of
significant digits as the factor with the fewest significant digits. The same rule
holds for division. In the following example we use the fact that the volume of a
rectangular object is the product of its length times its width times its height.

EXAMPLE 1.3 What is the volume of a rectangular object whose length is given
as 7.78 m, whose width is given as 3.486 m, and whose height is 1.367 m?

SOLUTION » We denote the volume by V and obtain the volume by multiplication, using a
calculator.
V = (7.78m)(3.486 m)(1.367m) = 37.07451636m> = 37.1m> .

The calculator delivered 10 digits, but we round the volume to 37.1 m?, since the factor with the
fewest significant digits has three significant digits. <

EXAMPLE 1.4 Compute the smallest and largest values that the volume in Ex-
ample 1.1 might have and determine whether the answer given in Example 1.1
is correctly stated.

SOLUTION » The smallest value that the length might have, assuming the given value to have
only significant digits, is 7.775 m, and the largest value that it might have is 7.785 m. The smallest
possible value for the width is 3.4855 m, and the largest value is 3.4865 m. The smallest possible
value for the height is 1.3665 m, and the largest value is 1.3675 m. The minimum value for the
volume is

Viin = (7.775m)(3.4855m)(1.3665m) = 37.0318254562 m’> .

The maximum value is
Vimax = (7.785m)(3.4865m)(1.3675m) = 37.1172354188 m3.

Obviously, all of the digits beyond the first three are insignificant. The rounded result of 37.1 m?
in Example 1.1 contains all of the digits that can justifiably be given. However, in this case there
is some chance that 37.0 m3 might be closer to the actual volume than is 37.1 m3. We will still
consider a digit to be significant if it might be incorrect by £1. <

Addition and Subtraction

The rule of thumb for significant digits in addition or subtraction is that for a digit
to be significant, it must arise from a significant digit in every term of the sum or
difference. You cannot simply count the number of significant digits in every term.

EXAMPLE 1.5 Determine the combined length of two objects, one of length
0.783 m and one of length 17.3184 m.

SOLUTION » We make the addition:
0.783 m
17.3184m
18.1014m ~18.101m

The fourth digit after the decimal point in the sum could be significant only if that digit were
significant in every term of the sum. The first number has only three significant digits after the
decimal point. We must round the answer to 18.101 m. Even after this rounding, we have obtained
a number with five significant digits, while one of our terms has only three significant digits. <«
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In a calculation with several steps, it is not a good idea to round off the insignif-
icant digits at each step. This procedure can lead to accumulation of round-off
error. A reasonable policy is to carry along at least one insignificant digit during
the calculation, and then to round off the insignificant digits at the final answer.
When using an electronic calculator, it is easy to use all of the digits carried by the
calculator and then to round off at the end of the calculation.

Significant Digits in Trigonometric Functions, Logarithms, and
Exponentials

If you are carrying out operations other than additions, subtractions, multiplica-
tions, and divisions, determining which digits are significant is not so easy. In
many cases the number of significant digits in the result is roughly the same as
the number of significant digits in the argument of the function, but more accurate
rules of thumb can be found.” If you need an accurate determination of the number
of significant digits when applying these functions, it might be necessary to do the
operation with the smallest and the largest values that the number on which you
must operate can have (incrementing and decrementing the number).

EXAMPLE 1.6 Calculate the following. Determine the correct number of sig-
nificant digits by incrementing or decrementing.

(a) sin(372.15°) (b) In(567.812)

(C) 6_9'813.

SOLUTION » (a) Using a calculator, we obtain

sin(372.155°) = 0.210557
sin(372.145°) = 0.210386.

Therefore,
sin(372.15°) = 0.2105.

The value could be as small as 0.2104, but we write 0.2105, since we routinely declare a digit
to be significant if it might be wrong by just +1. Even though the argument of the sine had five
significant digits, the sine has only four significant digits.

(b) By use of a calculator, we obtain

In(567.8125) = 6.341791259
In(567.8115) = 6.341789497.

Therefore,
In(567.812) = 6.34179.

In this case, the logarithm has the same number of significant digits as its argument. If the argument
of a logarithm is very large, the logarithm can have many more significant digits than its argument,
since the logarithm of a large number is a slowly varying function of its argument.

"Donald E. Jones, “Significant Digits in Logarithm Antilogarithm Interconversions,” J. Chem. Educ. 49, 753
(1972).
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(c) Using a calculator, we obtain
e 28135 — 0.00005470803
e 28125 — 0.00005476277.
Therefore, when we round off the insignificant digits,
e=28125 — 0.000547.

Although the argument of the exponential had four significant digits, the exponential has only three
significant digits. The exponential function of fairly large arguments is a rapidly varying function,
so fewer significant digits can be expected for large arguments. <

|EXERCISE 1.10 » | Calculate the following to the proper numbers of signif-
icant digits.

(a) (37.815 + 0.00435)(17.01 + 3.713)

(b) 625[e'>! 4 5in(60.0°)]

(c) 65.718 x 12.3

(d) 17.13 4 14.6751 4+ 3.123 4 7.654 — 8.123. [«

The Factor-Label Method

This is an elementary method for the routine conversion of a quantity measured in
one unit to the same quantity measured in another unit. The method consists of
multiplying the quantity by a conversion factor, which is a fraction that is equal to
unity in a physical sense, with the numerator and denominator equal to the same
quantity expressed in different units. This does not change the quantity physically,
but numerically expresses it in another unit, and so changes the number expressing
the value of the quantity. For example, to express 3.00 km in terms of meters, one

writes

1000 m ;
(3.00km) ( —=—) =3000m = 3.00 x 10°m. (1.25)

You can check the units by considering a given unit to “cancel” if it occurs in
both the numerator and denominator. Thus, both sides of Eq. (1.25) have units of
meters, because the km on the top cancels the km on the bottom of the left-hand
side. In applying the method, you should write out the factors explicitly, including
the units. You should carefully check that the unwanted units cancel. Only then
should you proceed to the numerical calculation.

EXAMPLE 1.7 Express the speed of light, 2.9979 x 108 ms™!, in miles per
hour. Use the definition of the inch, 1 in = 0.0254 m (exactly).

SOLUTION »

(2.9979 x 108 msfl) & 1 f:t I mi 60.8 60 min
0.0254m 12in /) \ 5280 ft 1 min 1h

=6.7061 x 103mih~!.

The conversion factors that correspond to exact definitions do not limit the number of significant
digits. In this example, all of the conversion factors are exact definitions, so our answer has five
significant digits because the stated speed has five significant digits. <
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|EXERCISE 1.11 b | Express the following in terms of SI base units. The
electron volt (eV), a unit of energy, equals 1.6022 x 10717 J.
(a) 24.17 mi (b) 75mih~!
(c) 7.5nmps~! (d) 13.6eV
<
SUMMARY

In this chapter, we introduced the use of numerical values and operations in chem-
istry. In order to use such values correctly, one must handle the units of mea-
surement in which they are expressed. Techniques for doing this, including the
factor-label method, were introduced. One must also recognize the uncertainties in
experimentally measured quantities. In order to avoid implying a greater accuracy
than actually exists, one must express calculated quantities with the proper number
of significant digits. Basic rules for significant digits were presented.

PROBLEMS

1.

Find the number of inches in a meter. How many significant digits could be
given?

. Find the number of meters in 1 mile and the number of miles in 1 kilometer,

using the definition of the inch. How many significant digits could be given?

. A furlong is one-eighth of a mile and a fortnight is 2 weeks. Find the speed of

light in furlongs per fortnight, using the correct number of significant digits.

. The distance by road from Memphis, Tennessee, to Nashville, Tennessee, is

206 miles. Express this distance in meters and in kilometers.

. A U.S. gallon is defined as 231.00 cubic inches.

a) Find the number of liters in one gallon.

b) The volume of a mole of an ideal gas at 0.00 °C (273.15K) and 1.000 atm
is 22.414 liters. Express this volume in gallons and in cubic feet.

. In the USA, footraces were once measured in yards and at one time, a time

of 10.00 seconds for this distance was thought to be unattainable. The best
runners now run 100 m in 10 seconds. Express 100 m in yards, assuming three
significant digits. If a runner runs 100 m in 10.00 s, find his time for 100 yards,
assuming a constant speed.

. Find the average length of a century in seconds and in minutes, finding all

possible significant digits. Use the fact that a year ending in 00 is not a leap
year unless the year is divisible by 400, in which case it is a leap year. Find the
number of minutes in a microcentury.
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8.

9.

10.

11.

12.

13.

14.

A light year is the distance traveled by light in one year.

a) Express this distance in meters and in kilometers. Use the average length
of a year as described in the previous problem. How many significant
digits can be given?

b) Express a light year in miles.

The Rankine temperature scale is defined so that the Rankine degree is the
same size as the Fahrenheit degree, and 0 °R is the same as 0 K.

a) Find the Rankine temperature at 0.00 °C.
b) Find the Rankine temperature at 0.00 °F.

Calculate the mass of AgClI that can be precipitated from 10.00 ml of a solution
of NaCl containing 0.345mol1~!. Report your answer to the correct number
of digits.

The volume of a sphere is given by

V = ﬂ71r3
3
where V is the volume and r is the radius. If a certain sphere has a radius given
as 0.005250 m, find its volume, specifying it with the correct number of digits.
Calculate the smallest and largest volumes that the sphere might have with the
given information and check your first answer for the volume.

(1.26)

The volume of a right circular cylinder is given by
V = nrzh,

where V is the volume, r is the radius, and # is the height. If a certain right
circular cylinder has a radius given as 0.134 m and a height given as 0.318 m,
find its volume, specifying it with the correct number of digits. Calculate the
smallest and largest volumes that the cylinder might have with the given infor-
mation and check your first answer for the volume.

The value of a certain angle is given as 31°. Find the measure of the angle
in radians. Using a table of trigonometric functions or a calculator, find the
smallest and largest values that its sine and cosine might have and specify the
sine and cosine to the appropriate number of digits.

a) Some elementary chemistry textbooks give the value of R, the
ideal gas constant, as 0.08211atmK~!'mol~'. Using the SI value,
8.3145J K" mol~!, obtain the value in latm K~! mol~! to five signifi-
cant digits.

b) Calculate the pressure in atmospheres and in N m~2 (Pa) of a sample of an
ideal gas withn = 0.13678 mol, V = 1.0001 and T = 298.15 K, using the
value of the ideal gas constant in SI units.

¢) Calculate the pressure in part b in atmospheres and in Nm~2 (Pa) using
the value of the ideal gas constant in latm K~ mol~".
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15.

16.
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The van der Waals equation of state gives better accuracy than the ideal gas
equation of state. It is

a
(P+V_n21) (Vi —b) =RT
where a and b are parameters that have different values for different
gases and where V,, = V/n, the molar volume. For carbon dioxide, a =
0.3640 Pam® mol =2, b = 4.267 x 107> m? mol~'. Calculate the pressure of
carbon dioxide in pascals, assuming that n = 0.13678 mol, V = 1.0001, and
T =298.15 K. Convert your answer to atmospheres and torr.

The specific heat capacity (specific heat) of a substance is crudely defined
as the amount of heat required to raise the temperature of unit mass of the
substance by 1 degree Celsius (1 °C). The specific heat capacity of water is
4.187°C~! g~!. Find the rise in temperature if 100.0 J of heat is transferred to
1.000 kg of water.



