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Preview

The first application of mathematics to chemistry deals with various physical quan-

tities that have numerical values. In this chapter, we introduce the correct use of

numerical values to represent measured physical quantities and the use of numer-

ical mathematics to calculate values of other quantities. Such values generally

consist of a number and a unit of measurement, and both parts of the value must

be manipulated correctly. We introduce the use of significant digits to communi-

cate the probable accuracy of the measured value. We also review the factor-label

method, which is a routine method of expressing a measured quantity in terms of

a different unit of measurement.

Principal Facts and Ideas

1. Specification of a measured quantity consists of a number and a unit.

2. A unit of measurement is an arbitrarily defined quantity that people have

agreed to use.

3. The SI units have been officially adopted by international organizations of

physicists and chemists.

4. Consistent units must be used in any calculation.

5. The factor-label method can be used to convert from one unit of measurement

to another.

6. Reported values of all quantities should be rounded so that insignificant digits

are not reported.
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Objectives

After you have studied the chapter, you should be able to:

1. use numbers and units correctly to express measured quantities;

2. understand the relationship of uncertainties in measurements to the use of sig-

nificant digits;

3. use consistent units, especially the SI units, in equations and formulas; and

4. use the factor-label method to convert from one unit of measurement to an-

other.

1.1 Numbers and Measurements

The most common use that chemists make of numbers is to report values for mea-

sured quantities. Specification of a measured quantity generally includes a number

and a unit of measurement. For example, a length might be given as 12.00 inches

(12.00 in) or 30.48 centimeters (30.48 cm), or 0.3048 meters (0.3048m), and so

on. Specification of the quantity is not complete until the unit of measurement is

specified. For example, 30.48 cm is definitely not the same as 30.48 in. We dis-

cuss numbers in this section of the chapter, and will use some common units of

measurement. We discuss units in the next section.

Numbers

There are several sets into which we can classify numbers. The numbers that can

represent physical quantities are called real numbers. These are the numbers with

which we ordinarily deal, and they consist of a magnitude and a sign, which can be

positive or negative. Real numbers can range from positive numbers of indefinitely

large magnitude to negative numbers of indefinitely large magnitude. Among the

real numbers are the integers 0, ±1, ±2, ±3, and so on, which are part of the

rational numbers. Other rational numbers are quotients of two integers, such as
2
3
, 7
9
, 37
53
. Fractions can be represented as decimal numbers. For example, 1

16
is

the same as 0.0625. Some fractions cannot be represented exactly by a decimal

number with a finite number of nonzero digits. For example, 1
3
is represented by

0.333333 · · · . The three dots (an ellipsis) that follow the given digits indicate that

more digits follow. In this case, infinitely many digits are required for an exact

representation. However, the decimal representation of a rational number either

has a finite number of nonzero digits or contains a repeating pattern of digits.

EXERCISE 1.1 ◮ Take a few simple fractions, such as 2
3
, 4
9
, or 3

7
and ex-

press them as decimal numbers, finding either all of the nonzero digits or the

repeating pattern of digits. ◭

The numbers that are not rational numbers are called irrational numbers. Al-

gebraic irrational number include square roots of rational numbers, cube roots of

rational numbers, and so on, which are not themselves rational numbers. All of

the rest of the real numbers are called transcendental irrational numbers. Two

commonly encountered transcendental irrational numbers are the ratio of the cir-

cumference of a circle to its diameter, called π and given by 3.141592653 · · · , and
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the base of natural logarithms, called e and given by 2.718281828 · · · . Irrational
numbers have the property that if you have some means of finding what the correct

digits are, you will never reach a point beyond which all of the remaining digits are

zero, or beyond which the digits form some other repeating pattern.1

In addition to real numbers, mathematicians have defined imaginary numbers

into existence. The imaginary unit, i, is defined to equal
√

−1. An imaginary

number is equal to a real number times i, and a complex number is equal to a

real number plus an imaginary number. If x and y are real numbers, then the

quantity z = x + iy is a complex number. x is called the real part of z, and the

real number y is called the imaginary part of z. Imaginary and complex numbers

cannot represent physically measurable quantities, but turn out to have important

applications in quantum mechanics. We will discuss complex numbers in the next

chapter.

The numbers that we have been discussing are called scalars, to distinguish

them from vectors. A scalar number has magnitude and sign, and a vector has both

magnitude and direction. We will discuss vectors later, and will see that a vector

can be represented by several scalars.

Measurements, Accuracy, and Significant Digits

A measured quantity can almost never be known with complete exactness. It is

therefore a good idea to communicate the probable accuracy of a reported mea-

surement. For example, assume that you measured the length of a piece of glass

tubing with a meter stick and that your measured value was 387.8 millimeters

(387.8mm). You decide that your experimental error was probably no greater than

0.6mm. The best way to specify the length of the glass tubing is

length = 387.8mm±0.6mm

If for some reason you cannot include a statement of the probable error, you should

at least avoid including digits that are probably wrong. In this case, your estimated

error is somewhat less than 1mm, so the correct number is probably closer to

388mm than to either 387mm or 389mm. If we do not want to report the expected

experimental error, we report the length as 388mm and assert that the three digits

given are significant digits. This means that the given digits are correctly stated.

If we had reported the length as 387.8mm, the last digit is insignificant. That is,

if we knew the exact length, the digit 8 after the decimal point is probably not the

correct digit, since we believe that the correct length lies between 387.2mm and

388.4mm.

You should always avoid reporting digits that are not significant. When you

carry out calculations involving measured quantities, you should always determine

how many significant digits your answer can have and round off your result to

that number of digits. When values of physical quantities are given in a physical

chemistry textbook or in this book, you can assume that all digits specified are

significant. If you are given a number that you believe to be correctly stated, you

can count the number of significant digits. If there are no zeros in the number, the

number of significant digits is just the number of digits. If the number contains

one or more zeros, any zero that occurs between nonzero digits does count as a

1It has been said that early in the twentieth century the legislature of the state of Indiana, in an effort to simplify

things, passed a resolution that henceforth in that state, π should be exactly equal to 3.
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significant digit. Any zeros that are present only to specify the location of a deci-

mal point do not represent significant digits. For example, the number 0.0000345

contains three significant digits, and the number 0.003045 contains four signifi-

cant digits. The number 76,000 contains only two significant digits. However,

the number 0.000034500 contains five significant digits. The zeros at the left are

present only to locate the decimal point, but the final two zeros are not needed to

locate a decimal point, and therefore must have been included because the number

is known with sufficient accuracy that these digits are significant.

A problem arises when zeros that appear to occur only to locate the decimal

point are actually significant. For example, if a mass is known to be closer to 3500

grams (3500 g) than to 3499 g or to 3501 g, there are four significant digits. If one

simply wrote 3500 g, persons with training in significant digits would assume that

the zeros are not significant and that there are two significant digits. Some people

communicate the fact that there are four significant digits by writing 3500. grams.

The explicit decimal point communicates the fact that the zeros are significant

digits. Others put a bar over any zeros that are significant, writing 350̄0̄ to indicate

that there are four significant digits.

Scientific Notation

The communication difficulty involving significant zeros can be avoided by the use

of scientific notation, in which a number is expressed as the product of two factors,

one of which is a number lying between 1 and 10 and the other is 10 raised to some

integer power. The mass mentioned above would thus be written as 3.500× 103 g.

There are clearly four significant digits indicated, since the trailing zeros are not

required to locate a decimal point. If the mass were known to only two significant

digits, it would be written as 3.5 × 103 g.

Scientific notation is also convenient for extremely small or extremely large

numbers. For example, Avogadro’s constant, the number of molecules or other

formula units per mole, is easier to write as 6.02214 × 1023 mol−1 than as

602,214,000,000,000,000,000,000 mol−1, and the charge on an electron is eas-

ier to write and read as 1.60217 × 10−19 coulomb (1.60217 × 10−19 C) than as

0.000000000000000000160217 C.

EXERCISE 1.2 ◮ Convert the following numbers to scientific notation, us-

ing the correct number of significant digits:

(a) 0.000598 (b) 67, 342, 000

(c) 0.000002 (d) 6432.150

◭

Rounding

The process of rounding is straightforward in most cases. The calculated num-

ber is simply replaced by that number containing the proper number of digits that

is closer to the calculated value than any other number containing this many dig-

its. Thus, if there are three significant digits, 4.567 is rounded to 4.57, and 4.564

is rounded to 4.56. However, if your only insignificant digit is a 5, your cal-

culated number is midway between two rounded numbers, and you must decide
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whether to round up or to round down. It is best to have a rule that will round

down half of the time and round up half of the time. One widely used rule is to

round to the even digit, since there is a 50% chance that any digit will be even.

For example, 2.5 would be rounded to 2, and 3.5 would be rounded to 4. An

equally valid procedure that is apparently not generally used would be to toss a

coin and round up if the coin comes up “heads” and to round down if it comes up

“tails.”

EXERCISE 1.3 ◮ Round the following numbers to four significant digits

(a) 0.2468985 (b) 78955

(c) 123456789 (d) 46.4535

◭

1.2 Numerical Mathematical Operations

We are frequently required to carry out numerical operations on numbers. The first

such operations involve pairs of numbers.

Elementary Arithmetic Operations

The elementary mathematical operations are addition, subtraction, multiplication,

and division. Some rules for operating on numbers with sign can be simply stated:

1. The product of two factors of the same sign is positive, and the product of two

factors of different signs is negative.

2. The quotient of two factors of the same sign is positive, and the quotient of two

factors of different signs is negative.

3. The difference of two numbers is the same as the sum of the first number and

the negative of the second.

4. Multiplication is commutative, which means that2 if a and b stand for numbers

a × b = b × a. (1.1)

5. Multiplication is associative, which means that

a × (b × c) = (a × b) × c. (1.2)

6. Multiplication and addition are distributive, which means that

a × (b + c) = a × b + a × c. (1.3)

2We enclose equations that you will likely use frequently in a box.
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Additional Mathematical Operations

In addition to the four elementary arithmetic operations, there are some other im-

portant mathematical operations, many of which involve only one number. The

magnitude, or absolute value, of a scalar quantity is a number that gives the size

of the number irrespective of its sign. It is denoted by placing vertical bars before

and after the symbol for the quantity. This operation means

|x| =

{

x if x ≥ 0

−x if x < 0
(1.4)

For example,

|4.5| = 4.5

|−3| = 3

The magnitude of a number is always nonnegative (positive or zero).

Another important set of numerical operations is the taking of powers and roots.

If x represents some number that is multiplied by itself n − 1 times so that there

are n factors, we represent this by the symbol xn, representing x to the nth power.

For example,

x2 = x × x, x3 = x × x × x, xn = x × x × x × · · · × x (n factors). (1.5)

The number n in the expression xn is called the exponent of x. If the exponent

is not an integer, we can still define xn. We will discuss this when we discuss

logarithms. An exponent that is a negative number indicates the reciprocal of the

quantity with a positive exponent:

x−1 = 1
x
, x−3 = 1

x3
(1.6)

There are some important facts about exponents. The first is

xaxb = xa+b (1.7)

where x, a, and b represent numbers. We call such an equation an identity, which

means that it is correct for all values of the variables in the equation. The next

identity is

(xa)b = xab (1.8)

Roots of real numbers are defined in an inverse way from powers. For example,

the square root of x is denoted by
√

x and is defined as the number that yields x

when squared:

(
√

x)2 = x (1.9)

The cube root of x is denoted by 3
√

x, and is defined as the number that when cubed

(raised to the third power) yields x:

(

3
√

x
)3 = x (1.10)
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Fourth roots, fifth roots, and so on, are defined in similar ways. The operation of

taking a root is the same as raising a number to a fractional exponent. For example,

3
√

x = x1/3 (1.11)

This equation means that

(

3
√

x
)3 = (x1/3)3 = x = (x3)1/3 = 3

√

x3.

This equation illustrates the fact that the order of taking a root and raising to a

power can be reversed without changing the result. We say that these operations

commute with each other.

There are two numbers that when squared will yield a given positive real num-

ber. For example, 22 = 4 and (−2)2 = 4. When the symbol
√
4 is used, only the

positive square root, 2, is meant. To specify the negative square root of x, we write

−
√

x. If we confine ourselves to real numbers, there is no square root, fourth root,

sixth root, and so on, of a negative number. In Section 2.6, we define imaginary

numbers, which are defined be square roots of negative quantities. Both positive

and negative numbers can have real cube roots, fifth roots, and so on, since an odd

number of negative factors yields a negative product.

The square roots, cube roots, and so forth, of integers and other rational num-

bers are either rational numbers or algebraic irrational numbers. The square root

of 2 is an example of an algebraic irrational number. An algebraic irrational num-

ber produces a rational number when raised to the proper integral power. When

written as a decimal number, an algebraic irrational number does not have a finite

number of nonzero digits or exhibit any pattern of repeating digits. An irrational

number that does not produce a rational number when raised to any integral power

is a transcendental irrational number. Examples are e, the base of natural loga-

rithms, and π , the ratio of a circle’s circumference to its diameter.

Logarithms

We have discussed the operation of raising a number to an integral power. The

expression a2 means a × a, a−2 means 1/a2, a3 means a × a × a, and so on. In

addition, you can have exponents that are not integers. If we write

y = ax (1.12)

the exponent x is called the logarithm of y to the base a and is denoted by

x = loga (y) (1.13)

If a is positive, only positive numbers possess real logarithms.

Common Logarithms

If the base of logarithms equals 10, the logarithms are called common logarithms:

If 10x = y, then x is the common logarithm of y, denoted by log10(y). The

subscript 10 is sometimes omitted, but this can cause confusion.
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For integral values of x, it is easy to generate the following short table of com-

mon logarithms:

y x = log10 (y) y x = log10 (y)

1 0 0.1 −1

10 1 0.01 −2

100 2 0.001 −3

1000 3 etc.

In order to understand logarithms that are not integers, we need to understand

exponents that are not integers.

EXAMPLE 1.1 Find the common logarithm of
√
10.

SOLUTION ◮ The square root of 10 is the number that yields 10 when multiplied by itself:
(√

10
)2

= 10.

We use the fact about exponents
(

ax
)z = axz. (1.14)

Since 10 is the same thing as 101, √
10 = 101/2. (1.15)

Therefore

log10

(√
10

)

= log10(3.162277...) =
1

2
= 0.5000

◭

Equation (1.14) and some other relations governing exponents can be used to

generate other logarithms, as in the following problem.

EXERCISE 1.4 ◮ Use Eq. (1.14) and the fact that 10−n = 1/(10n) to gen-

erate the negative logarithms in the short table of logarithms. ◭

We will not discuss further how the logarithms of various numbers are com-

puted. Extensive tables of logarithms with up to seven or eight significant digits

were once in common use. Most electronic calculators provide values of loga-

rithms with as many as 10 or 11 significant digits. Before the invention of elec-

tronic calculators, tables of logarithms were used when a calculation required more

significant digits than a slide rule could provide. For example, to multiply two

numbers together, one would look up the logarithms of the two numbers, add the

logarithms and then look up the antilogarithm of the sum (the number possessing

the sum as its logarithm).

Natural Logarithms

Besides 10, there is another commonly used base of logarithms. This is a transcen-

dental irrational number called e and equal to 2.7182818 . . .

If ey = x then y = loge(x) = ln(x). (1.16)
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Logarithms to this base are called natural logarithms. The definition of e is3

e = lim
n→∞

(

1 +
1

n

)n

= 2.7182818 . . . (1.17)

The “lim” notation means that larger and larger values of n are taken.

EXERCISE 1.5 ◮ Evaluate the quantity (1+ 1
n
)n for several integral values

of n ranging from 1 to 1, 000, 000. Notice how the value approaches the value

of e as n increases. ◭

The notation ln(x) is more common than loge(x). Natural logarithms are also

occasionally called Napierian logarithms.4 Unfortunately, some mathematicians

use the symbol log(y) without a subscript for natural logarithms. Chemists fre-

quently use the symbol log(y) without a subscript for common logarithms and the

symbol ln (y) for natural logarithms. Chemists use both common and natural log-

arithms, so the best practice is to use log10(x) for the common logarithm of x and

ln(x) for the natural logarithm of x.

If the common logarithm of a number is known, its natural logarithm can be

computed as

eln(y) = 10log10(y) =
(

eln(10)
)log10(y)

= eln(10) log10(y). (1.18)

The natural logarithm of 10 is equal to 2.302585 . . . , so we can write

ln (y) = ln(10) log10(y) = (2.302585 · · · ) log10(y) . (1.19)

In order to remember Eq. (1.19) correctly, keep the fact in mind that since e is

smaller than 10, the natural logarithm is larger than the common logarithm.

EXERCISE 1.6 ◮ Without using a calculator or a table of logarithms, find

the following:

(a) ln(100.000) (b) ln(0.0010000)

(c) log10(e)

◭

Logarithm Identities

There are a number of identities involving logarithms, some of which come from

the exponent identities in Eqs. (1.6)–(1.8). Table 1.1 lists some identities involv-

ing exponents and logarithms. These identities hold for common logarithms and

natural logarithms as well for logarithms to any other base.

3The base of natural logarithms, e, is named after Leonhard Euler, 1707–1783, a great Swiss mathematician.
4Naperian logarithms are named after John Napier, 1550–1617, a Scottish landowner, theologian, and mathe-

matician, who was one of the inventors of logarithms.
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TABLE 1.1 ◮ Properties of Exponents and Logarithms

Exponent fact Logarithm fact

a0 = 1 loga (1) = 0

a1/2 =
√

a loga

(√
a
)

= 1
2

a1 = a loga (a) = 1

ax1ax2 = ax1+x2 loga (y1y2) = loga (y1) + loga (y2)

a−x = 1
ax loga

(

1
y

)

= − loga (y)

ax1

ax2
= ax1−x2 loga

(

y1
y2

)

= loga (y1) − loga (y2)

(ax)z = axz loga (yz) = z loga (y)

a∞ = ∞ loga (∞) = ∞

a−∞ = 0 loga (0) = −∞

Figure 1.1 ◮ The exponential function.

The Exponential

The exponential is the same as raising e (the base of natural logarithms, equal to

2.7182818284 · · · ) to a given power and is denoted either by the usual notation for
a power, or by the notation exp(· · · ).

y = aebx ≡ a exp (bx) , (1.20)

Figure 1.1 shows a graph of this function for b > 0.

The graph in Fig. 1.1 exhibits an important behavior of the exponential ebx . For

b > 0, it doubles each time the independent variable increases by a fixed amount

whose value depends on the value of b. For large values of b the exponential

function becomes large very rapidly. If b < 0, the function decreases to half its

value each time the independent variable increases by a fixed amount. For large

negative values of b the exponential function becomes small very rapidly.

EXERCISE 1.7 ◮ For a positive value of b find an expression for the change

in x required for the function ebx to double in size. ◭
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An example of the exponential function is in the decay of radioactive isotopes.

If N0 is the number of atoms of the isotope at time t = 0, the number at any other

time, t , is given by

N(t) = N0e
−t/τ , (1.21)

where τ is called the relaxation time. It is the time for the number of atoms of the

isotope to drop to 1/e = 0.367879 of its original value. The time that is required

for the number of atoms to drop to half its original value is called the half-time or

half-life, denoted by t1/2.

EXAMPLE 1.2 Show that t1/2 is equal to τ ln(2).

SOLUTION ◮ If t1/2 is the half-life, then

e−t1/2/τ =
1

2
.

Thus
t1/2

τ
= − ln

(

1

2

)

= ln (2) . (1.22)

◭

EXERCISE 1.8 ◮ A certain population is growing exponentially and dou-

bles in size each 30 years.

(a) If the population includes 4.00×106 individuals at t = 0, write the formula

giving the population after a number of years equal to t.

(b) Find the size of the population at t = 150 years. ◭

EXERCISE 1.9 ◮ A reactant in a first-order chemical reaction without back

reaction has a concentration governed by the same formula as radioactive de-

cay,

[A]t = [A]0 e−kt ,

where [A]0 is the concentration at time t = 0, [A]t is the concentration at time

t , and k is a function of temperature called the rate constant. If k = 0.123 s−1,

find the time required for the concentration to drop to 21.0% of its initial value.

◭

1.3 Units of Measurement

The measurement of a length or other variable would be impossible without a stan-

dard definition of the unit of measurement. For many years science and com-

merce were hampered by the lack of accurately defined units of measurement.

This problem has been largely overcome by precise measurements and interna-

tional agreements. The internationally accepted system of units of measurements

is called the Systéme International d’Unités, abbreviated SI. This is an MKS sys-

tem, which means that length is measured in meters, mass in kilograms, and time

in seconds. In 1960 the international chemical community agreed to use SI units,
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TABLE 1.2 ◮ SI Units

SI base units (units with independent definitions)

Physical Name of

quantity unit Symbol Definition

Length meter m Length such that the speed of light is exactly

299,792,458m s
−1

.

Mass kilogram kg The mass of a platinum-iridium cylinder kept

at the International Bureau of Weights and

Measures in France.

Time second s The duration of 9,192,631,770 cycles of the

radiation of a certain emission of the cesium atom.

Electric current ampere A The magnitude of current which, when flowing

in each of two long parallel wires 1m apart in

free space, results in a force of 2× 107N

per meter of length.

Temperature kelvin K Absolute zero is 0K; triple point of water is 273.16K.

Luminous intensity candela cd The luminous intensity, in the perpendicular

intensity direction, of a surface of 1/600, 000m2

of a black body at temperature of freezing

platinum at a pressure of 101,325Nm
−2

.

Amount of substance mole. mol Amount of substance that contains as

many elementary units as there are carbon

atoms in exactly 0.012 kg of the carbon-12 (12C)

isotope.

Other SI units (derived units)

Physical Name of Physical

quantity unit dimensions Symbol Definition

Force newton kgm s−2 N 1N = 1 kgm s−2

Energy joule kgm2 s−2 J 1 J = 1 kgm2 s−2

Electrical charge coulomb A s C 1C = 1A s

Pressure pascal Nm−2 Pa 1 Pa = 1Nm−2

Magnetic field tesla kg s−2 A−1 T 1T = 1 kg s−2 A−1

= 1Wbm−2

Luminous flux lumen cd sr lm 1 lm = 1 cd sr

(sr = steradian)

which had been in use by physicists for some time.5 The seven base units given in

Table 1.2 form the heart of the system. The table also includes some derived units,

which owe their definitions to the definitions of the seven base units.

Multiples and submultiples of SI units are commonly used.6 Examples are the

millimeter and kilometer. These multiples and submultiples are denoted by stan-

dard prefixes attached to the name of the unit, as listed in Table 1.3. The abbrevi-

ation for a multiple or submultiple is obtained by attaching the prefix abbreviation

5See “Policy for NBS Usage of SI Units,” J. Chem. Educ. 48, 569 (1971).
6There is a possibly apocryphal story about Robert A. Millikan, a Nobel-prize-winning physicist who was

not noted for false modesty. A rival is supposed to have told Millikan that he had defined a new unit for the

quantitative measure of conceit and had named the new unit the kan. However, 1 kan was an exceedingly large

amount of conceit so for most purposes the practical unit was to be the millikan.
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TABLE 1.3 ◮ Prefixes for Multiple and Submultiple Units

Multiple Prefix Abbreviation Multiple Prefix Abbreviation

1012 tera- T 10−3 milli- m

109 giga- G 10−6 micro- µ

106 mega- M 10−9 nano- n

103 kilo- k 10−12 pico- p

1 — — 10−15 femto- f

10−1 deci- d 10−18 atto- a

10−2 centi- c

to the unit abbreviation, as in Gm (gigameter) or ns (nanosecond). Note that since

the base unit of length is the kilogram, the table would imply the use of things

such as the mega kilogram. Double prefixes are not used. We use gigagram instead

of megakilogram. The use of the prefixes for 10−1 and 10−2 is discouraged, but

centimeters will probably not be abandoned for many years to come. The Celsius

temperature scale also remains in common use among chemists.

Some non-SI units continue to be used, such as the atmosphere (atm), which

is a pressure defined to equal 101, 325Nm−2 (101, 325 Pa), the liter (l), which

is exactly 0.001m3, and the torr, which is a pressure such that exactly 760 torr

equals exactly 1 atm. The Celsius temperature scale is defined such that the degree

Celsius (◦C) is the same size as the kelvin, and 0 ◦C is equivalent to 273.15K.

In the United States of America, English units of measurement are still in com-

mon use. The inch (in) has been redefined to equal exactly 0.0254m. The foot (ft)

is 12 inches and the mile (mi) is 5280 feet. The pound (lb) is equal to 0.4536 kg

(not an exact definition; good to four significant digits).

Any measured quantity is not completely specified until its units are given. If a

is a length equal to 10.345m, one must write

a = 10.345m (1.23)

not just

a = 10.345 (not correct).

It is permissible to write

a/m = 10.345

which means that the length a divided by 1m is 10.345, a dimensionless number.

When constructing a table of values, it is convenient to label the columns or rows

with such dimensionless quantities.

When you make numerical calculations, you should make certain that you use

consistent units for all quantities. Otherwise, you will likely get the wrong answer.

This means that (1) you must convert all multiple and submultiple units to the base

unit, and (2) you cannot mix different systems of units. For example, you cannot

correctly substitute a length in inches into a formula in which the other quantities

are in SI units without converting. It is a good idea to write the unit as well as the

number, as in Eq. (1.23), even for scratch calculations. This will help you avoid

some kinds of mistakes by inspecting any equation and making sure that both sides

are measured in the same units. In 1999 a U.S. space vehicle optimistically named

the Mars Climate Orbiter crashed into the surface of Mars instead of orbiting the

planet. The problem turned out to be that engineers working on the project had
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used English units such as feet and pounds, whereas physicists had used metric

units such as meters and kilograms. A failure to convert units properly cost U.S.

taxpayers several millions of dollars and the loss of a possibly useful mission. In

another instance, when a Canadian airline switched from English units to metric

units, a ground crew miscalculated the mass of fuel needed for a flight. The jet

airplane ran out of fuel, but was able to glide to an unused military airfield and

make a “deadstick” landing. Some people were having a picnic on the unused

runway, but were able to get out of the way. There was even a movie made about

the incident.

1.4 Numerical Calculations

The most common type of numerical calculation in a chemistry course is the cal-

culation of one quantity from the numerical values of other quantities, guided by

some formula. There can be familiar formulas that are used in everyday life and

there can be formulas that are specific to chemistry. Some formulas require only

the four basic arithmetic operations: addition, subtraction, multiplication, and di-

vision. Other formulas require the use of the exponential, logarithms, or trigono-

metric functions. The formula is a recipe for carrying out the specified numerical

operations. Each quantity is represented by a symbol (a letter) and the operations

are specified by symbols such as×, /, +, −, ln, and so on. A simple example is the

familiar formula for calculating the volume of a rectangular object as the product

of its height (h), width (w), and length (l):

V = h × w × l

The symbol for multiplication is often omitted so that the formula would be written

v = hwl. If two symbols are written side by side, it is understood that the quanti-

ties represented by the symbols are to be multiplied together. Another example is

the ideal gas equation

P =
nRT

V
(1.24)

where P represents the pressure of the gas, n is the amount of gas in moles, T is

the absolute temperature, V is the volume, and R is a constant known as the ideal

gas constant.

Significant Digits in a Calculated Quantity

When you calculate a numerical value that depends on a set of numerical values

substituted into a formula, the accuracy of the result depends on the accuracy of

the first set of values. The number of significant digits in the result depends on

the numbers of significant digits in the first set of values. Any result containing

insignificant digits must be rounded to the proper number of digits.

Multiplication and Division

There are several useful rules of thumb that allow you to determine the proper

number of significant digits in the result of a calculation. For multiplication of
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two or more factors, the rule is that the product will have the same number of

significant digits as the factor with the fewest significant digits. The same rule

holds for division. In the following example we use the fact that the volume of a

rectangular object is the product of its length times its width times its height.

EXAMPLE 1.3 What is the volume of a rectangular object whose length is given

as 7.78m, whose width is given as 3.486m, and whose height is 1.367m?

SOLUTION ◮ We denote the volume by V and obtain the volume by multiplication, using a

calculator.

V = (7.78m)(3.486m)(1.367m) = 37.07451636m3 = 37.1m3 .

The calculator delivered 10 digits, but we round the volume to 37.1m3, since the factor with the

fewest significant digits has three significant digits. ◭

EXAMPLE 1.4 Compute the smallest and largest values that the volume in Ex-

ample 1.1 might have and determine whether the answer given in Example 1.1

is correctly stated.

SOLUTION ◮ The smallest value that the length might have, assuming the given value to have

only significant digits, is 7.775m, and the largest value that it might have is 7.785m. The smallest

possible value for the width is 3.4855m, and the largest value is 3.4865m. The smallest possible

value for the height is 1.3665m, and the largest value is 1.3675m. The minimum value for the

volume is

Vmin = (7.775m)(3.4855m)(1.3665m) = 37.0318254562m3 .

The maximum value is

Vmax = (7.785m)(3.4865m)(1.3675m) = 37.1172354188m3 .

Obviously, all of the digits beyond the first three are insignificant. The rounded result of 37.1m3

in Example 1.1 contains all of the digits that can justifiably be given. However, in this case there

is some chance that 37.0m3 might be closer to the actual volume than is 37.1m3. We will still

consider a digit to be significant if it might be incorrect by ±1. ◭

Addition and Subtraction

The rule of thumb for significant digits in addition or subtraction is that for a digit

to be significant, it must arise from a significant digit in every term of the sum or

difference. You cannot simply count the number of significant digits in every term.

EXAMPLE 1.5 Determine the combined length of two objects, one of length

0.783m and one of length 17.3184m.

SOLUTION ◮ We make the addition:

0.783m

17.3184m

18.1014m ≈ 18.101m

The fourth digit after the decimal point in the sum could be significant only if that digit were

significant in every term of the sum. The first number has only three significant digits after the

decimal point. We must round the answer to 18.101m. Even after this rounding, we have obtained

a number with five significant digits, while one of our terms has only three significant digits. ◭
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In a calculation with several steps, it is not a good idea to round off the insignif-

icant digits at each step. This procedure can lead to accumulation of round-off

error. A reasonable policy is to carry along at least one insignificant digit during

the calculation, and then to round off the insignificant digits at the final answer.

When using an electronic calculator, it is easy to use all of the digits carried by the

calculator and then to round off at the end of the calculation.

Significant Digits in Trigonometric Functions, Logarithms, and
Exponentials

If you are carrying out operations other than additions, subtractions, multiplica-

tions, and divisions, determining which digits are significant is not so easy. In

many cases the number of significant digits in the result is roughly the same as

the number of significant digits in the argument of the function, but more accurate

rules of thumb can be found.7 If you need an accurate determination of the number

of significant digits when applying these functions, it might be necessary to do the

operation with the smallest and the largest values that the number on which you

must operate can have (incrementing and decrementing the number).

EXAMPLE 1.6 Calculate the following. Determine the correct number of sig-

nificant digits by incrementing or decrementing.

(a) sin(372.15◦) (b) ln(567.812)

(c) e−9.813.

SOLUTION ◮ (a) Using a calculator, we obtain

sin(372.155◦) = 0.210557

sin(372.145◦) = 0.210386.

Therefore,

sin(372.15◦) = 0.2105.

The value could be as small as 0.2104, but we write 0.2105, since we routinely declare a digit

to be significant if it might be wrong by just ±1. Even though the argument of the sine had five

significant digits, the sine has only four significant digits.

(b) By use of a calculator, we obtain

ln(567.8125) = 6.341791259

ln(567.8115) = 6.341789497.

Therefore,

ln(567.812) = 6.34179.

In this case, the logarithm has the same number of significant digits as its argument. If the argument

of a logarithm is very large, the logarithm can have many more significant digits than its argument,

since the logarithm of a large number is a slowly varying function of its argument.

7Donald E. Jones, “Significant Digits in Logarithm Antilogarithm Interconversions,” J. Chem. Educ. 49, 753

(1972).
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(c) Using a calculator, we obtain

e−9.8135 = 0.00005470803

e−9.8125 = 0.00005476277.

Therefore, when we round off the insignificant digits,

e−9.8125 = 0.000547.

Although the argument of the exponential had four significant digits, the exponential has only three

significant digits. The exponential function of fairly large arguments is a rapidly varying function,

so fewer significant digits can be expected for large arguments. ◭

EXERCISE 1.10 ◮ Calculate the following to the proper numbers of signif-

icant digits.

(a) (37.815 + 0.00435)(17.01 + 3.713)

(b) 625[e12.1 + sin(60.0 ◦)]
(c) 65.718 × 12.3

(d) 17.13 + 14.6751 + 3.123 + 7.654 − 8.123. ◭

The Factor-Label Method

This is an elementary method for the routine conversion of a quantity measured in

one unit to the same quantity measured in another unit. The method consists of

multiplying the quantity by a conversion factor, which is a fraction that is equal to

unity in a physical sense, with the numerator and denominator equal to the same

quantity expressed in different units. This does not change the quantity physically,

but numerically expresses it in another unit, and so changes the number expressing

the value of the quantity. For example, to express 3.00 km in terms of meters, one

writes

(3.00 km)

(

1000m

1 km

)

= 3000m = 3.00 × 103m . (1.25)

You can check the units by considering a given unit to “cancel” if it occurs in

both the numerator and denominator. Thus, both sides of Eq. (1.25) have units of

meters, because the km on the top cancels the km on the bottom of the left-hand

side. In applying the method, you should write out the factors explicitly, including

the units. You should carefully check that the unwanted units cancel. Only then

should you proceed to the numerical calculation.

EXAMPLE 1.7 Express the speed of light, 2.9979 × 108 ms−1, in miles per

hour. Use the definition of the inch, 1 in = 0.0254m (exactly).

SOLUTION ◮

(

2.9979 × 108ms−1
)

(

1 in

0.0254m

)(

1 ft

12 in

)(

1mi

5280 ft

)(

60 s

1min

) (

60min

1 h

)

= 6.7061 × 108mi h−1 .

The conversion factors that correspond to exact definitions do not limit the number of significant

digits. In this example, all of the conversion factors are exact definitions, so our answer has five

significant digits because the stated speed has five significant digits. ◭



18 Chapter 1 Numbers, Measurements, and Numerical Mathematics

EXERCISE 1.11 ◮ Express the following in terms of SI base units. The

electron volt (eV), a unit of energy, equals 1.6022 × 10−19 J.

(a) 24.17mi (b) 75mi h−1

(c) 7.5 nmps−1 (d) 13.6 eV

◭

SUMMARY

In this chapter, we introduced the use of numerical values and operations in chem-

istry. In order to use such values correctly, one must handle the units of mea-

surement in which they are expressed. Techniques for doing this, including the

factor-label method, were introduced. One must also recognize the uncertainties in

experimentally measured quantities. In order to avoid implying a greater accuracy

than actually exists, one must express calculated quantities with the proper number

of significant digits. Basic rules for significant digits were presented.

PROBLEMS

1. Find the number of inches in a meter. How many significant digits could be

given?

2. Find the number of meters in 1 mile and the number of miles in 1 kilometer,

using the definition of the inch. How many significant digits could be given?

3. A furlong is one-eighth of a mile and a fortnight is 2 weeks. Find the speed of

light in furlongs per fortnight, using the correct number of significant digits.

4. The distance by road from Memphis, Tennessee, to Nashville, Tennessee, is

206 miles. Express this distance in meters and in kilometers.

5. A U.S. gallon is defined as 231.00 cubic inches.

a) Find the number of liters in one gallon.

b) The volume of a mole of an ideal gas at 0.00 ◦C (273.15K) and 1.000 atm

is 22.414 liters. Express this volume in gallons and in cubic feet.

6. In the USA, footraces were once measured in yards and at one time, a time

of 10.00 seconds for this distance was thought to be unattainable. The best

runners now run 100m in 10 seconds. Express 100m in yards, assuming three

significant digits. If a runner runs 100m in 10.00 s, find his time for 100 yards,

assuming a constant speed.

7. Find the average length of a century in seconds and in minutes, finding all

possible significant digits. Use the fact that a year ending in 00 is not a leap

year unless the year is divisible by 400, in which case it is a leap year. Find the

number of minutes in a microcentury.
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8. A light year is the distance traveled by light in one year.

a) Express this distance in meters and in kilometers. Use the average length

of a year as described in the previous problem. How many significant

digits can be given?

b) Express a light year in miles.

9. The Rankine temperature scale is defined so that the Rankine degree is the

same size as the Fahrenheit degree, and 0 ◦R is the same as 0K.

a) Find the Rankine temperature at 0.00 ◦C.

b) Find the Rankine temperature at 0.00 ◦F.

10. Calculate the mass of AgCI that can be precipitated from 10.00 ml of a solution

of NaCl containing 0.345mol l−1. Report your answer to the correct number

of digits.

11. The volume of a sphere is given by

V =
4

3
πr3 (1.26)

where V is the volume and r is the radius. If a certain sphere has a radius given

as 0.005250m, find its volume, specifying it with the correct number of digits.

Calculate the smallest and largest volumes that the sphere might have with the

given information and check your first answer for the volume.

12. The volume of a right circular cylinder is given by

V = πr2h,

where V is the volume, r is the radius, and h is the height. If a certain right

circular cylinder has a radius given as 0.134m and a height given as 0.318 m,

find its volume, specifying it with the correct number of digits. Calculate the

smallest and largest volumes that the cylinder might have with the given infor-

mation and check your first answer for the volume.

13. The value of a certain angle is given as 31 ◦. Find the measure of the angle
in radians. Using a table of trigonometric functions or a calculator, find the

smallest and largest values that its sine and cosine might have and specify the

sine and cosine to the appropriate number of digits.

14.
a) Some elementary chemistry textbooks give the value of R, the

ideal gas constant, as 0.0821 l atmK−1mol−1. Using the SI value,

8.3145 JK−1mol−1, obtain the value in l atmK−1mol−1 to five signifi-

cant digits.

b) Calculate the pressure in atmospheres and in Nm−2 (Pa) of a sample of an

ideal gas with n = 0.13678mol, V = 1.000 l and T = 298.15K, using the

value of the ideal gas constant in SI units.

c) Calculate the pressure in part b in atmospheres and in Nm−2 (Pa) using

the value of the ideal gas constant in l atmK−1mol−1.
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15. The van der Waals equation of state gives better accuracy than the ideal gas

equation of state. It is

(

P +
a

V 2
m

)

(Vm − b) = RT

where a and b are parameters that have different values for different

gases and where Vm = V/n, the molar volume. For carbon dioxide, a =
0.3640 Pam6mol−2, b = 4.267 × 10−5m3mol−1. Calculate the pressure of

carbon dioxide in pascals, assuming that n = 0.13678mol, V = 1.000 l, and

T = 298.15K. Convert your answer to atmospheres and torr.

16. The specific heat capacity (specific heat) of a substance is crudely defined

as the amount of heat required to raise the temperature of unit mass of the

substance by 1 degree Celsius (1 ◦C). The specific heat capacity of water is

4.18 J ◦C−1 g−1. Find the rise in temperature if 100.0 J of heat is transferred to

1.000 kg of water.


